Skip to main content

Implementation of behavioral control on a robot hand/arm system

  • Section 3: Grippers And Articulated Hands
  • Conference paper
  • First Online:
Experimental Robotics II

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 190))

Abstract

Planning and behavior are two strategies which have characterized much of the recent research in robotic intelligent control. While planning algorithms provide provable convergence and analytic results, they are not generally robust and responsive in dynamic environments. Reactive behavior on the other hand, while designed for robust performance and rapid response, provide fewer analytic tools for design and evaluation. Our objective is to understand the mechanism of behavioral control and to develop analytic design tools, particularly in the area of robotic manipulation. In this paper we propose a general framework for reactive control and discuss some methods for analysis and design. We also analyze and implement a behavioral control scheme for the acquisition of a cylinder using a robot hand/arm system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, R.C., “Intergrating Behavioral, Perceptual, and World Knowledge in Reactive Navigation,” Designing Autonomous Agents, ed. Maes, P., 1990.

    Google Scholar 

  2. Bajcsy, Ruzena and Goldberg, Kenneth Y., “Active Touch and Robot Perception”, Cognition and Brain Theory, Vol. 2, Summer 1984.

    Google Scholar 

  3. Bicchi A., Salisbury J. K., and Brock, D. L., “Experimental Evaluation of Friction Characteristics with and Articulated Robotic Hand,” Second International Symposium On Experimental Robotics, June 1991.

    Google Scholar 

  4. Brock, D. L., “Contact Sensing Palm for the Salisbury Robot Hans,” Sandia Report, June 1990.

    Google Scholar 

  5. Brooks, R. A., “A Robust Layered Control System for a Mobile Robot,” MIT AI Memo 864, MIT Artificial Intelligence Laboratory, September 1985.

    Google Scholar 

  6. Brooks, R. A., “Achieving Artificial Intelligence Through Building Robots,” MIT AI Memo 899, MIT Artificial Intelligence Laboratory, May 1986.

    Google Scholar 

  7. Brooks, R. A., “A Robot that Walks: Emergent Behaviors from a Carefully Evolved Network,” Proceedings of the IEEE International Conference on Robotics and Automation, Philadelphia, PN, 1988.

    Google Scholar 

  8. Brooks, R. A., “The Behavior Language; User's Guide,” MIT AI Memo 1227, MIT Artificial Intelligence Laboratory, April 1990.

    Google Scholar 

  9. Brost, R. C., “Automatic Grasp Planning in the Presence of Uncertainty,” Proceedings of the IEEE International Conference on Robotics and Automation, San Fransico, CA, April 1986.

    Google Scholar 

  10. Chammas, C. Z., “Analysis and Implementation of Robust Grasping Behaviors,” MIT AI TR 1237, MIT Artificial Intelligence Laboratory, May 1990.

    Google Scholar 

  11. Connell, Jonathan, “Creature Design with the Subsumption Architecture,” Proceedings of IJCAI-87, Milan, Italy, August 1987.

    Google Scholar 

  12. Erdmann, M. A., “On Probabilistic Strategies for Robot Tasks,” MIT AI TR 1155, MIT Artificial Intelligence Laboratory, August 1989.

    Google Scholar 

  13. Gould, James L., Ethology — The Mechanisms and Evolution of Behavior, W.W. Norton and Company, New York, 1982.

    Google Scholar 

  14. Grupen, Roderic A., “Behavior based control for autonomous robotic manipulation” University of Massachusetts, Dec. 13, 1988.

    Google Scholar 

  15. Iberall, Thea, “The Nature of Human Prehension: Three Dextrous Hands in One”, Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, NC, 1987, p. 396–401.

    Google Scholar 

  16. Jacobsen, Stephen C., et., al., “Behavior Based Design of Robot Effectors”, Center for Engineering Design, Department of Mechanical Engineering, University of Utah, 1987.

    Google Scholar 

  17. Lozano-Pérez, Tomás, “The Design of a Mechanical Assembly System,” MIT AI TR 397, MIT Artificial Intelligence Laboratory, 1976.

    Google Scholar 

  18. Lozano-Pérez, Tomás, “LAMA: A Language for Automatic Mechanical Assembly,” 5 th International Joint Conference on Artificial Intelligence, MIT Cambridge, MA, August 1977, p. 710–716.

    Google Scholar 

  19. Lozano-Pérez, Tomás, “Spatial Planning: A Configuration Space Approach,” IEEE Transactions on Computation, Vol. C-32, No. 2, 1983, p. 108–120.

    Google Scholar 

  20. Lozano-Pérez, Tomás, et. al, “Handey: A Task-Level Robot System,” Proceedings of the International Society of Robotics Research, 1987, p. 123–130.

    Google Scholar 

  21. Lozano-Pérez, Tomás, et. al., “Task-Level Planning of Pick-and-Place Robot Motions,” IEEE Computer, March 1989, p. 21–29.

    Google Scholar 

  22. Mataric, Maja J., “A Distributed Model for Mobile Robot Environment-Learning and Navigation,” MIT AI TR 1228, MIT Artificial Intelligence Laboratory, May 1990.

    Google Scholar 

  23. Nguyen, Van-Duc, “The Synthesis of Stable Force-closure Grasps,” MIT AI TR 905, MIT Artificial Intelligence Laboratory, July 1986.

    Google Scholar 

  24. Payton, D.W., “Internalized Plans: A representation for action resources,” Designing Autonomous Agents, ed. Maes, P., 1990.

    Google Scholar 

  25. Stansfield, S. A., “Reasoning About Grasping,” AAAI-88.

    Google Scholar 

  26. Stansfield, S. A., “Robotic Grasping of Unknown Objects: A Knowledge-Based Approach,” Sandia Report SAND89 — 1087, June 1989.

    Google Scholar 

  27. Stansfield, S. A., “Knowledge-based Robotic Grasping,” Proceedings of the IEEE International Conference on Robotics and Automation, Cincinnati, OH, May 1990, p. 1270–1275.

    Google Scholar 

  28. Tomovic, R., Bekey G. and Karplus, W., “A Strategy for Grasp Synthesis with Multifingered Robot Hands,” Proceedings of the IEEE International Conference on Robotics and Automation, Raleigh, NC, 1987.

    Google Scholar 

  29. Villarreal, A. and Asada, H., “A Geometric Representation of Distributed Compliance for the Assembly of Flexible Parts,” Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, April 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Raja Chatila Gerd Hirzinger

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this paper

Cite this paper

Brock, D.L., Kenneth Salisbury, J. (1993). Implementation of behavioral control on a robot hand/arm system. In: Chatila, R., Hirzinger, G. (eds) Experimental Robotics II. Lecture Notes in Control and Information Sciences, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0036135

Download citation

  • DOI: https://doi.org/10.1007/BFb0036135

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-19851-2

  • Online ISBN: 978-3-540-39323-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics