Skip to main content

Contractile properties of skeletal muscle fibers in relation to myofibrillar protein isoforms

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology, Volume 126

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 126))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akster HA, Granzier HLM, Focant B (1989) Differences in I band structure, sarcomere extensibility, and electrophoresis of titin between two muscle fiber types of the perch (Perca fluviatilis L). J Ultrastruct Mol Struct Res 102:109–121

    Article  Google Scholar 

  • Alford EK, Roy RR, Hodgson JA, Edgerton VR (1987) Electromyography of rat soleus, medial gastrocnemius, and tibialis anterior during hindlimb suspension. Exp Neurol 96:635–649

    Article  PubMed  CAS  Google Scholar 

  • Altringham JD, Johnston IA (1982) The pCa-tension and force-velocity characteristics of skinned fibres isolated from fish fast and slow muscles. J Physiol (Lond) 333:421–449

    PubMed  CAS  Google Scholar 

  • Andreadis A, Gallego ME, Nadal-Ginard B (1987) Generation of protein isoform diversity by alternative splicing: mechanistic and biological implications. Annu Rev Cell Biol 3:207–242

    Article  PubMed  CAS  Google Scholar 

  • Ashley C, Mulligan IP, Lea TJ (1991) Ca2+ and activation mechanisms in skeletal muscle. Q Rev Biophys 24:1–73

    PubMed  CAS  Google Scholar 

  • Bandman E (1985) Myosin isoenzyme transitions in muscle development, maturation and disease. Int Rev Cytol 97:97–131

    PubMed  CAS  Google Scholar 

  • Bandman E (1992) Contractile protein isoforms in muscle development. Dev Biol 154:273–283

    Article  PubMed  CAS  Google Scholar 

  • Barany M (1967) ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50:197–217

    Article  PubMed  Google Scholar 

  • Barton PJR, Cohen A, Robert B, Fiszman MY, Bonhomme F, Guenet J-L, Leader BP, Buckingham ME (1985) The myosin alkali light chain of mouse ventricular and slow skeletal muscle are indistinguishable and are encoded by the same gene. J Biol Chem 260:8578–8584

    PubMed  CAS  Google Scholar 

  • Barton PJR, Robert B, Cohen A, Garner I, Sassoon D, Weydert A, Buckingham ME (1988) Structure and sequence of the myosin alkali light chain gene expressed in adult cardiac atria and fetal striated muscle. J Biol Chem 263:12669–12676

    PubMed  CAS  Google Scholar 

  • Blinks JR, Rüdel R, Taylor SR (1978) Calcium transients in isolated amphibian skeletal muscle fibres: detection with aequorin. J Physiol (Lond) 277:291–323

    PubMed  CAS  Google Scholar 

  • Bottinelli R, Schiaffino S, Reggiani C (1991) Force-velocity relations and myosin heavy chain compositions of skinned fibres from rat skeletal muscle. J Physiol (Lond) 437:655–672

    PubMed  CAS  Google Scholar 

  • Brandt PW, Diamond MS, Schachat FH (1984) The thin filament of vertebrate skeletal muscle co-operatively activates as a unit. J Mol Biol 180:379–384

    Article  PubMed  CAS  Google Scholar 

  • Brandt PW, Diamond MS, Rutchik JS, Schachat FH (1987). Co-operative interactions between troponin-tropomyosin units extend the length of the thin filament in skeletal muscle. J Mol Biol 195:885–886

    Article  PubMed  CAS  Google Scholar 

  • Bremel RD, Weber A (1972) Cooperation within actin filaments in vertebrate skeletal muscle. Nature New Biol 238:97–101

    PubMed  CAS  Google Scholar 

  • Brenner B (1986) The cross-bridge cycle in muscle. Basic Res Cardiol 81:1–15

    Article  PubMed  CAS  Google Scholar 

  • Brenner B, Eisenberg E (1986) Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution. Proc Natl Acad Sci USA 83:3542–3546

    Article  PubMed  CAS  Google Scholar 

  • Brenner B, Schoenberg M, Chalovich JM, Greene LE, Eisenberg E (1982) Evidence for cross-bridge attachment in relaxed muscle at low ionic strength. Proc Natl Acad Sci USA 79:7288–7291

    Article  PubMed  CAS  Google Scholar 

  • Brisson JB, Golosinska K, Smillie LB, Sykes BD (1986) Interaction of tropomyosin and troponin T: a proton nuclear magnetic resonance study. Biochemistry 25:4548–4555

    Article  PubMed  CAS  Google Scholar 

  • Brooks SV, Faulkner JA, McCubbrey DA (1990) Power outputs of slow and fast skeletal muscles of mice. J Appl Physiol 68:1282–1285

    Article  PubMed  CAS  Google Scholar 

  • Brown WE, Salmons S, Whalen RG (1983) The sequential replacement of myosin subunit isoforms during muscle type transformation induced by long term electrical stimulation. J Biol Chem 258:14686–14692

    PubMed  CAS  Google Scholar 

  • Brown WE, Salmons S, Whalen RG (1985) Mechanisms underlying the asynchronous replacement of myosin light chain isoforms during stimulation-induced fibre-type transformation of skeletal muscle. FEBS Lett 192:235–238

    Article  PubMed  CAS  Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM (1960) Interactions between motoneurons and muscles in respect of the characteristic speeds of their responses. J Physiol (Lond) 150:417–439

    PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Herrick RE, Baldwin KM (1991) Influence of hyperthyroidism on maximal shortening velocity and myosin isoform distribution in skeletal muscles. Am J Physiol 261:C285–C295

    PubMed  CAS  Google Scholar 

  • Caiozzo VJ, Herrick RE, Baldwin KM (1992) Response of slow and fast muscle to hypothyroidism: maximal shortening velocity and myosin isoforms. Am J Physiol 263:C86–C94

    PubMed  CAS  Google Scholar 

  • Celio MR, Heizmann CW (1982) Calcium binding protein parvalbumin is associated with fast contracting muscle. Nature 297:504–506

    Article  PubMed  CAS  Google Scholar 

  • Claffin DR, Faulkner JA (1985) Shortening velocity extrapolated to zero load and unloaded shortening velocity of whole rat skeletal muscle. J Physiol (Lond) 359:357–363

    Google Scholar 

  • Claflin DR, Faulkner JA (1989) The force-velocity relationship at high shortening velocities in the soleus muscle of the rat. J Physiol (Lond) 411: 627–637

    PubMed  CAS  Google Scholar 

  • Close RI (1964) Dynamic properties of fast and slow skeletal muscles of the rat during development. J Physiol (Lond) 173:74–95

    PubMed  CAS  Google Scholar 

  • Close RI (1972a) The relations between sarcomere length and characteristics of isometric twitch contractions of frog sartorius muscles. J Physiol (Lond) 220:745–762

    PubMed  CAS  Google Scholar 

  • Close RI (1972b) Dynamic properties of mammalian skeletal muscles. Physiol Rev 52:129–197

    PubMed  CAS  Google Scholar 

  • Cox JA, Comte M, Stein EA. (1981) Calmodulin free skeletal muscle troponin C prepared in the absence of urea. Biochem J 195:205–211

    PubMed  CAS  Google Scholar 

  • Dantzig JA, Walker JW, Trentham DR, Goldman YE (1988) Relaxation of muscle fibers with adenosine 5′-[γ-thio]triphosphate (ATP[γS]) and by laser photolysis of caged ATP[γS]: evidence for Ca2+-dependent affinity of rapidly detaching zero-force cross-bridges. Proc Natl Acad Sci USA 85:6716–6720

    Article  PubMed  CAS  Google Scholar 

  • Dantzig JA, Goldman YE, Lacktis J, Millar NC, Homsher E (1992) Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibers. J Physiol (Lond) 451:247–278

    PubMed  CAS  Google Scholar 

  • Diffee GM, Caiozzo VJ, Herrick RE, Baldwin KM (1991a) Contractile and biochemical properties of rat soleus and plantaris after hindlimb suspension. Am J Physiol 260:C528–C534

    PubMed  CAS  Google Scholar 

  • Diffee GM, Haddad F, Herrick RE, Baldwin KM (1991b) Control of myosin heavy chain expression: interaction of hypothyroidism and hindlimb suspension. Am J Physiol 261:C1099–C1106

    PubMed  CAS  Google Scholar 

  • Diffee GM, Caiozzo VJ, McCue SA, Herrick RE, Baldwin KM (1993) Activity-induced regulation of myosin isoform distribution: comparison of two contractile activity programs. J Appl Physiol 74:2509–2516

    PubMed  CAS  Google Scholar 

  • Eddinger TJ, Cassens RG, Moss RL (1986) Mechanical and histochemical characterization of skeletal muscles from senescent rats. Am J Physiol 251:C421–C430

    PubMed  CAS  Google Scholar 

  • Edman KAP (1988) Double-hyperbolic force-velocity relation in frog muscle fibres. J Physiol (Lond) 404:301–321

    PubMed  CAS  Google Scholar 

  • El-Saleh S, Warber KD, Potter JD (1986) The role of tropomyosin-troponin in the regulation of skeletal muscle contraction. J Muscle Res Cell Motil 7:387–404

    Article  PubMed  CAS  Google Scholar 

  • Farrow AJ, Rossmanith GH, Unsworth J (1988). The role of calcium ions in the activation of rabbit psoas muscles. J Muscle Res Cell Motil 9:261–274

    Article  PubMed  CAS  Google Scholar 

  • Fitts RH (1994). Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    PubMed  CAS  Google Scholar 

  • Fitts RH, Metzger JM, Riley DA, Unsworth BR (1986) Models of disuse: a comparison of hindlimb suspension and immobilization. J Appl Physiol 60:1946–1953

    Article  PubMed  CAS  Google Scholar 

  • Flicker PF, Phillips GN, Cohen C (1982) Troponin and its interactions with tropomyosin. J Mol Biol 162:495–501

    Article  PubMed  CAS  Google Scholar 

  • Ford LE, Huxley AF, Simmons RM (1977) Tension responses to sudden length change in stimulated frog muscle fibres near slack length. J Physiol (Lond) 269:441–451

    PubMed  CAS  Google Scholar 

  • Ford LE, Nakagawa K, Desper J, Seow CY (1991) Effect of osmotic compression on the force-velocity properties of glycerinated rabbit skeletal muscle cells. J Gen Physiol 97:73–88

    Article  PubMed  CAS  Google Scholar 

  • Fürst DO, Osborn M, Nave R, Weber K (1988) The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line. J Cell Biol 106:1563–1572

    Article  PubMed  Google Scholar 

  • Gailly P, Hermans E, Octave JN, Gillis JM (1993) Specific increase of genetic expression of parvalbumin in fast muscles of mdx mice. FEBS Lett 326:272–274

    Article  PubMed  CAS  Google Scholar 

  • Galler S, Schmitt TL, Pette D (1994) Stretch activation, unloaded shortening velocity, and myosin heavy chain isoforms of rat skeletal muscle fibres. J Physiol (Lond) (in press)

    Google Scholar 

  • Gardetto PR, Schluter JM, Fitts RH (1989) Contractile function of single muscle fibers after hindlimb suspension. J Appl Physiol 66:2739–2749

    PubMed  CAS  Google Scholar 

  • Gauthier G, Lowey S (1979) Distribution of myosin isoenzymes among skeletal muscle fiber types. J Cell Biol 81:10–25

    Article  PubMed  CAS  Google Scholar 

  • Gauthier GF, Lowey S, Hobbs AW (1978) Fast and slow myosin in developing muscle fibres. Nature 274:25–29

    Article  PubMed  CAS  Google Scholar 

  • Gerday C (1982) Soluble calcium-binding proteins from fish and invertebrate muscle. Mol Physiol 2:63–87

    CAS  Google Scholar 

  • Gillis JM (1985) Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochim Biophys Acta 811:97–145

    PubMed  CAS  Google Scholar 

  • Gillis JM, Thomason D, Lefevre J, Kretsinger RH (1982) Parvalbumins and muscle relaxation: a computer simulation. J Muscle Res Cell Motil 3:377–398

    Article  PubMed  CAS  Google Scholar 

  • Godt RE, Lindley BD (1982) Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J Gen Physiol 80:279–297

    Article  PubMed  CAS  Google Scholar 

  • Goldman YE, Hibberd MG, Trentham DR (1984a) Relaxation of rabbit psoas muscle fibers from rigor by photochemical generation of ATP. J Physiol (Lond) 354:577–604

    PubMed  CAS  Google Scholar 

  • Goldman YE, Hibberd MG, Trentham DR (1984b) Initiation of active contraction by photogeneration of ATP in rabbit psoas muscle fibers. J Physiol (Lond) 354:605–624

    PubMed  CAS  Google Scholar 

  • Gordon AM, Huxley AF, Julian FJ (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol (Lond) 184:170–192

    PubMed  CAS  Google Scholar 

  • Grabarek X, Grabarek J, Leavis PC, Gergely J (1983) Cooperative binding to the Ca2+-specific sites of troponin C in regulated actin and actomyosin. J Biol Chem 258:14098–14102

    PubMed  CAS  Google Scholar 

  • Greaser ML, Moss RL, Reiser PJ (1988) Variations in contractile properties of single muscle fibers in relation to troponin T isoforms and myosin light chains. J Physiol (Lond) 406:85–98

    PubMed  CAS  Google Scholar 

  • Gustafson TA, Markham BE, Bahl JJ, Morkin E (1987) Thyroid hormone regulates expression of transfected alpha-myosin heavy chain fusion gene in fetal heart cells. Proc Natl Acad Sci USA 84:3122–3126

    Article  PubMed  CAS  Google Scholar 

  • Guth K, Potter JD (1987) Effect of rigor and cycling cross-bridges on the structure of troponin C and the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit psoas fibers. J Biol Chem 262:13627–13635

    PubMed  CAS  Google Scholar 

  • Handel SE, Wang S-M, Greaser ML, Schultz E, Bulinski JC, Lessard JL (1989) Sketelal muscle myofibrillogenesis as revealed with a monoclonal antibody to titin in combination with detection of the α and γ isoforms of actin. Dev Biol 132:35–44

    Article  PubMed  CAS  Google Scholar 

  • Handel SE, Greaser ML, Schultz E, Wang S-M, Bulinski JC, Lin JJ-C, Lessard JL (1991) Chicken cardiac myofibrillogenesis studied with antibodies specific for titin and the muscle and non-muscle isoforms of actin and tropomyosin. Cell Tissue Res 263:419–430

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW (1984) Parvalbumin, an intracellular calcium-binding protein: distribution, properties, and possible roles in mammalian cells. Experientia 40:910–921

    Article  PubMed  CAS  Google Scholar 

  • Heizmann CW, Berchtold MW, Rowlerson AM (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscle. Proc Natl Acad Sci USA 79:7243–7247

    Article  PubMed  CAS  Google Scholar 

  • Higuchi H, Goldman YE (1991) Sliding distance between actin and myosin filaments per ATP molecule hydrolysed in skinned skeletal muscle fibres. Nature 352:352–354

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1938) The heat of shortening and the dynamic constants of muscle. Proc R Soc B 126:136–195

    Article  Google Scholar 

  • Hill TL, Eisenberg E, Greene L (1983) Alternate model for cooperative equilibrium binding of myosin S1-nucleotide complex. Proc Natl Acad Sci USA 80:60–64

    Article  PubMed  CAS  Google Scholar 

  • Hofmann PA, Metzger JM, Greaser ML, Moss RL (1990) The effects of partial extraction of light chain 2 on the Ca2+ sensitivities of isometric tension, stiffness and velocity of shortening. J Gen Physiol 95:477–498

    Article  PubMed  CAS  Google Scholar 

  • Hofmann PA, Greaser ML, Moss RL (1991a) C-protein limits shortening velocity of rabbit skeletal muscle fibres at low levels of Ca2+ activation. J Physiol (Lond) 439:701–715

    PubMed  CAS  Google Scholar 

  • Hofmann PA, Hartzell HC, Moss RL (1991b) Alterations in Ca2+ sensitive tension due to partial extraction of C-protein from rat skinned cardiac myocytes and rabbit skeletal muscle fibers. J Gen Physiol 97:1141–1163

    Article  PubMed  CAS  Google Scholar 

  • Hoh JFY (1991) Myogenic regulation of mammalian skeletal muscle fibers. News Physiol Sci 6:1–6

    PubMed  CAS  Google Scholar 

  • Hoh, JFY and S Hughes. 1988. Myogenic and neurogenic regulation of myosin gene expression in cat jaw-closing muscles regenerating in fast and slow limb muscle beds. J Muscle Res Cell Motil 9:59–72

    Article  PubMed  CAS  Google Scholar 

  • Homsher E, Lacktis J (1988) The effect of shortening on the phosphate release step of the actomyosin ATPase. Biophys J 53:564a

    Google Scholar 

  • Homsher E, Millar NC (1990) Caged compounds and striated muscle contraction. Annu Rev Physiol 52:875–896

    Article  PubMed  CAS  Google Scholar 

  • Horowits R (1992) Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 61:391–398

    Google Scholar 

  • Horowits R, Podolsky RJ (1987) The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments. J Cell Biol 105:2217–2223

    Article  PubMed  CAS  Google Scholar 

  • Horowits R, Podolsky RJ (1988) Thick filament movement and isometric tension in activated skeletal muscle. Biophys J 54:165–171

    Article  PubMed  CAS  Google Scholar 

  • Hou TT, Johnson JD, Rall JA (1992a) Parvalbumin content and Ca2+, Mg2+ dissociation rates correlated with changes in relaxation rate of frog muscle fibres. J Physiol (Lond) 441:285–304

    Google Scholar 

  • Hou TT, Johnson JD, Rall JA (1992b) Effect of temperature on relaxation rate and Ca2+, Mg2+ dissociation rates from parvalbumin of frog muscle fibres. J Physiol (Lond) 449:399–410

    PubMed  CAS  Google Scholar 

  • Hughes, SM, Cho M, Karsch-Mizrachi I, Travis M, Silberstein L, Leinwand LA, Blau HM (1993) Three slow myosin heavy chains sequentially expressed in developing mammalian skeletal muscle. Dev Biol 158:183–199

    Article  PubMed  CAS  Google Scholar 

  • Huxley AF (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    PubMed  CAS  Google Scholar 

  • Huxley AF, Simmons RM (1971) Proposed mechanism of force generation in striated muscle. Nature 233:533–538

    Article  PubMed  CAS  Google Scholar 

  • Huxley HE (1990) Sliding filaments and molecular motile systems. J Biol Chem 265:8347–8350

    PubMed  CAS  Google Scholar 

  • Ianuzzo D, Ling E, Hamilton N (1991) Competitive control of myosin expression: hypertrophy vs. hyperthyroidism. J Appl Physiol 70:2328–2330

    PubMed  CAS  Google Scholar 

  • Ishijima A, Doi T, Sakurada K, Yanagida T (1991) Sub-piconewton force fluctuations in vitro. Nature 352:301–306

    Article  PubMed  CAS  Google Scholar 

  • Irving M, Lombardi V, Piazzesi G, Ferenczi MA (1992). Myosin head movements are synchronous with the elementary force-generating process in muscle. Nature 357:156–158

    Article  PubMed  CAS  Google Scholar 

  • Izumo S, Mahdavi V (1988) Thyroid hormone receptor alpha isoforms generated by alternatively splicing differentially activate myosin heavy chain gene transcription. Nature 334:539–542

    Article  PubMed  CAS  Google Scholar 

  • Izumo S, Nadal-Ginard B, Mahdavi V (1986) All members of the MHC multigene family respond to thyroid hormone in a highly tissue specific manner. Science 231:597–600

    Article  PubMed  CAS  Google Scholar 

  • Julian FJ (1971) The effect of calcium on the force-velocity relation of briefly glycerinated frog muscle fibres. J Physiol (Lond) 218:117–145

    PubMed  CAS  Google Scholar 

  • Julian FJ, Sollins MR (1975) Variation in muscle stiffness with force at increasing speeds of shortening. J Gen Physiol 66:287–302

    Article  PubMed  CAS  Google Scholar 

  • Kaplan JH (1990) Photochemical manipulation of divalent cation levels. Annu Rev Physiol 52:897–914

    Article  PubMed  CAS  Google Scholar 

  • Katz B (1939) Relation between force and speed in contraction. J Physiol (Lond) 96:45–64

    PubMed  CAS  Google Scholar 

  • Kawai M, Brandt PW (1976) Two rigor states in skinned crayfish single muscle fibers. J Gen Physiol 68:267–280

    Article  PubMed  CAS  Google Scholar 

  • Kirschbaum BJ, Kucher H-B, Kelly AM, Pette D (1990) Effects of increased neuromuscular activity at altered thyroid hormone levels on myosin expression. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 473–479

    Google Scholar 

  • Klug G, Reichmann H, Pette D (1983) Rapid reduction in parvalbumin concentration during chronic stimulation of rabbit fast twitch muscle. FEBS Lett 152:180–182

    Article  PubMed  CAS  Google Scholar 

  • Kron SJ, Toyoshima YY, Uyeda TQP, Spudich JA (1991) Assays for actin sliding movement over myosin-coated surfaces. Methods Enzymol 196:399–416

    PubMed  CAS  Google Scholar 

  • Lannergren J, Arner A (1990) Relaxation rate of intact striated muscle fibres after flash photolysis of a caged calcium chelator (diazo 2). J Muscle Res Cell Motil 13:630–634

    Article  Google Scholar 

  • Larsson L, Moss RL (1993) Maximum velocity of shortening in relation to myosin isoform composition in single fibres from human quadriceps and soleus muscles. J Physiol (Lond) 472:595–614

    PubMed  CAS  Google Scholar 

  • Lea TJ, Fenton MJ, Potter JD, Ashley CC (1990) Rapid activation by photolysis of nitr-5 in skinned fibres of the striated adductor muscle from the scallop. Biochim Biophys Acta 1034:186–194

    PubMed  CAS  Google Scholar 

  • Leavis PC, Kraft EL (1978) Calcium binding to cardiac troponin C. Arch Biochem Biophys 186:411–415

    Article  PubMed  CAS  Google Scholar 

  • Leberer E, Seedorf U, Pette D (1986) Neural control of gene expression in skeletal muscle. Ca-sequestering proteins in developing and chronically stimulated rabbit skeletal muscle. Biochem J 239:295–300

    PubMed  CAS  Google Scholar 

  • Leeuw T, Pette D (1993) Coordinate changes in the expression of troponin subunit and myosin heavy-chain isoforms during fast-to-slow transition of low-frequency-stimulated rabbit muscle. Eur J Biochem 213:1039–1046

    Article  PubMed  CAS  Google Scholar 

  • Levy RM, Umazume Y, Kushmerick MJ (1976) Ca2+ dependence of tension and ADP production in segments of chemically skinned muscle fibers. Biochim Biophys Acta 430:352–365

    Article  PubMed  CAS  Google Scholar 

  • Lombardi V, Piazzesi G, Linari M (1992) Rapid regeneration of the actin-myosin power stroke in contracting muscle. Nature 355:638–641

    Article  PubMed  CAS  Google Scholar 

  • Lowey S, Risby D (1971) Light chains from fast and slow muscle myosins. Nature 234:81–85

    Article  PubMed  CAS  Google Scholar 

  • Lowey S, Waller GS, Trybus KM (1993) Skeletal muscle myosin light chains are essential for physiological speeds of shortening. Nature 365:454–456

    Article  PubMed  CAS  Google Scholar 

  • Lu Z, Moss RL, Walker JW (1993) Tension transients initiated by photo-generation of MgADP in skinned skeletal muscle fibers. J Gen Physiol 101:867–888

    Article  PubMed  CAS  Google Scholar 

  • Mabuchi K, Pinter K, Mabuchi Y, Sreter F, Gergely J (1984) Characterization of rabbit masseter muscle fibers. Muscle Nerve 7:431–438

    Article  PubMed  CAS  Google Scholar 

  • Magid A, Law DJ (1985) Myofibrils bear most of the resting tension in frog skeletal muscle. Science 230:1280–1282

    Article  PubMed  CAS  Google Scholar 

  • Mahdavi V, Izumo S, Nadal-Ginard B (1987) Developmental and hormonal regulation of sarcomeric myosin heavy chain gene family. Circ Res 60:804–814

    PubMed  CAS  Google Scholar 

  • Mak AS, Smillie LB (1981) Structural interpretation of the two-site binding of troponin on the muscle thin filament. J Mol Biol 149:541–550

    Article  PubMed  CAS  Google Scholar 

  • Margossian SS (1985) Reversible dissociation of dog cardiac myosin regulatory light chain 2 and its influence on ATP hydrolysis. J Biol Chem 260:13747–13754

    PubMed  CAS  Google Scholar 

  • Margossian SS, Bhan AK, Slayter HS (1983) Role of the regulatory light chains in skeletal muscle actomyosin ATPase and minifilament formation. J Biol Chem 258:13359–13369

    PubMed  CAS  Google Scholar 

  • Maruyama K, Kimura S, Ohashi K, Kuwano Y (1981) Connectin, an elastic protein of muscle. Identification of titin with connectin. J Biochem 89:701–709

    PubMed  CAS  Google Scholar 

  • Maxwell LC, Faulkner JA, Murphy RA (1982) Relationship among fibre type, myosin ATPase activity and contractile properties. Histochem J 14:981–997

    Article  PubMed  CAS  Google Scholar 

  • McDonald KS, Fitts RH (1993) The effect of hindlimb unweighting on single soleus fiber maximal shortening velocity and ATPase activity. J Appl Physiol 74:2949–2957

    PubMed  CAS  Google Scholar 

  • Metzger JM, Moss RL (1987) Greater hydrogen ion-induced depression of tension and velocity in skinned single fibres of rat fast than slow muscles. J Physiol (Lond) 393:727–742

    PubMed  CAS  Google Scholar 

  • Metzger JM, Moss RL (1988a) Thin filament regulation of shortening velocity in rat skinned skeletal muscle: effects of osmotic compression. J Physiol (Lond) 398:165–175

    PubMed  CAS  Google Scholar 

  • Metzger JM, Moss RL (1988b) Depression of Ca2+ insensitive tension due to reduced pH in partially troponin-extracted skinned skeletal muscle fibers. Biophys J 54:1169–1173

    PubMed  CAS  Google Scholar 

  • Metzger JM, Moss RL (1990a) Effects on isometric tension and stiffness due to reduced pH in mammalian fast-and slow-twitch skinned skeletal muscle fibres. J Physiol (Lond) 428:737–750

    PubMed  CAS  Google Scholar 

  • Metzger JM, Moss RL (1990b) Ca2+-sensitive cross-bridge transitions in mammalian fast and slow skeletal muscle fibers. Science 247:1088–1090

    Article  PubMed  CAS  Google Scholar 

  • Metzger JM, Moss RL (1992) Myosin light chain 2 modulates calcium sensitive cross-bridge transitions in vertebrate skeletal muscle. Biophys J 63:460–468

    PubMed  CAS  Google Scholar 

  • Metzger JM, Greaser ML, Moss RL (1989) Variations in cross-bridge attachment rate with phosphorylation of myosin. J Gen Physiol 93:855–883

    Article  PubMed  CAS  Google Scholar 

  • Millar NC, Homsher E (1990) The effect of phosphate and calcium on force generation in glycerinated rabbit skeletal muscle fibers. J Biol Chem 265:20234–20240

    PubMed  CAS  Google Scholar 

  • Moss RL (1986) Variations in maximum shortening velocity in skinned skeletal muscle fibers due to changes in thin filament activation with Ca2+ and by partial extraction of troponin-C. J Physiol (Lond) 377:487–505

    PubMed  CAS  Google Scholar 

  • Moss RL (1992) Ca2+ regulation of mechanical properties of striated muscle: mechanistic studies using extraction and replacement of regulatory proteins. Circ Res 70:865–884

    PubMed  CAS  Google Scholar 

  • Moss RL, Haworth RA (1984) The effects of low levels of MgATP upon the mechanical properties of skinned skeletal muscle fibers of the rabbit. Biophys J 45:733–742

    PubMed  CAS  Google Scholar 

  • Moss RL, Giulian GG, Greaser ML (1982) Mechanical effects accompanying the removal of myosin LC2 from skinned skeletal muscle fibres. J Biol Chem 257:8588–8591

    PubMed  CAS  Google Scholar 

  • Moss RL, Giulian GG, Greaser ML (1983) Effects of EDTA treatment upon the protein subunit composition and mechanical properties of mammalian skeletal muscle fibers. J Cell Biol 96:970–978

    Article  PubMed  CAS  Google Scholar 

  • Moss RL, Giulian GG, Greaser ML (1985) The effects of partial extraction of TnC upon the tension-pCa relation in mammalian skeletal muscle. J Gen Physiol 86:585–600

    Article  PubMed  CAS  Google Scholar 

  • Moss RL, Allen JD, Greaser ML (1986a) The effects of partial extraction of whole troponin complex upon the tension-pCa relation in rabbit skeletal muscle. J Gen Physiol 87:761–774

    Article  PubMed  CAS  Google Scholar 

  • Moss RL, Lauer MR, Giulian GG, Greaser ML (1986b) Altered Ca2+ dependence of tension development in skinned skeletal muscle fibers following modification of troponin by partial substitution with cardiac TnC. J Biol Chem 261:6096–6099

    PubMed  CAS  Google Scholar 

  • Moss RL, Reiser PJ, Greaser ML, Eddinger TJ (1990) Varied expression of myosin alkali light chains is associated with altered speed of contraction in rabbit fast twitch skeletal muscles. In: Pette D (ed) The dynamic state of muscle fibers. De Gruyter, Berlin, pp 355–368

    Google Scholar 

  • Moss RL, Nwoye LO, Greaser ML (1991) Substitution of cardiac troponin-C into rabbit muscle does not alter the length dependence of Ca2+ sensitivity of tension. J Physiol (Lond) 440:273–289

    PubMed  CAS  Google Scholar 

  • Mounier Y, Holy X, Stevens L (1989) Compared properties of the contractile system of skinned slow and fast rat muscle fibers. Pflugers Arch 415:136–141

    Article  PubMed  CAS  Google Scholar 

  • Nockholds CE, Kretsinger RH, Coffee CJ, Bradshaw RA (1972) Structure of a calcium-binding carp myogen. Proc Natl Acad Sci USA 69:581–584

    Article  Google Scholar 

  • Pan B-S, Gordon AM, Luo Z (1989) Removal of tropomyosin overlap modifies cooperative binding of myosin S-1 to reconstituted thin filaments of rabbit striated muscle. J Biol Chem 264:8495–8498

    PubMed  CAS  Google Scholar 

  • Pechere JF, Capony JP, Ryden L (1971) The primary structure of the major parvalbumin from hake muscle. Eur J Biochem 23:431–428

    Article  Google Scholar 

  • Pette D, Düsterhöft S (1992) Altered gene expression in fast-twitch muscle induced by chronic low-frequency stimulation. Am J Physiol 262:R333–R338

    PubMed  CAS  Google Scholar 

  • Pette D, Staron RS (1990) Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol 116:1–76

    PubMed  CAS  Google Scholar 

  • Pette D, Vrbová G (1985) Neural control of phenotypic expression in mammalian muscle fibers. Muscle Nerve 8:676–689

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Vrbová G (1992) Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. Rev Physiol Biochem Pharm 120:115–202

    Article  CAS  Google Scholar 

  • Podolin RA, Ford LE (1986) Influence of partial activation on force-velocity properties of frog skinned muscle fibers. J Gen Physiol 87:607–631

    Article  PubMed  CAS  Google Scholar 

  • Potter JD, Gergely J (1975) The calcium and magnesium binding sites on troponin and their role in the regulation of myofibrillar adenosine triphosphatase. J Biol Chem 250:4628–4633

    PubMed  CAS  Google Scholar 

  • Rayment I, Rypniewski WR, Schmidt-Base K, Smith R, Tomchick DR, Benning MM, Winkelman DA, Wesenberg G, Holden HM (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58

    Article  PubMed  CAS  Google Scholar 

  • Reiser PJ, Moss RL, Giulian GG, Greaser ML (1985a) Shortening velocity in single fibers from adult rabbit soleus muscles is correlated with myosin heavy chain composition. J Biol Chem 260:9077–9080

    PubMed  CAS  Google Scholar 

  • Reiser PJ, Moss RL, Giulian GG, Greaser ML (1985b) Shortening velocity and myosin heavy chains of developing rabbit muscle fibers. J Biol Chem 260:14403–14405

    PubMed  CAS  Google Scholar 

  • Reiser PJ, Kasper CE, Moss RL (1987) Myosin subunits and contractile properties of single fibers from hypokinetic rat muscles. J Appl Physiol 63:2293–2300

    PubMed  CAS  Google Scholar 

  • Reiser PJ, Moss RL, Greaser ML (1988a) Myosin heavy chain composition of single cells from avian slow skeletal muscle is strongly correlated with velocity of shortening during development. Dev Biol 129:400–407

    Article  PubMed  CAS  Google Scholar 

  • Reiser PJ, Kasper CE, Greaser ML, Moss RL (1988b) Functional significance of myosin transitions in single fibers of developing soleus muscle. Am J Physiol 254:C605–C613

    PubMed  CAS  Google Scholar 

  • Reiser PJ, Greaser ML, Moss RL (1992) Troponin T isoforms are associated with functional heterogeneity among single fibers from neonatal and adult avian skeletal muscles. J Physiol (Lond) 449:573–588

    PubMed  CAS  Google Scholar 

  • Ridgway EB, Gordon AM (1984) Muscle calcium transient: effect of post-stimulus length changes in single fibers. J Gen Physiol 83:75–103

    Article  PubMed  CAS  Google Scholar 

  • Robbins J, Horan T, Gulick J, Kropp K (1986) The chicken myosin heavy chain family. J Biol Chem 261:6606–6612

    PubMed  CAS  Google Scholar 

  • Robertson SP, Johnson JD, Potter JD (1981) The time course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J 34:559–569

    PubMed  CAS  Google Scholar 

  • Rome LC, Sosnicki AA (1990) The influence of temperature on mechanics of red muscle in carp. J Physiol (Lond) 427:151–169

    PubMed  CAS  Google Scholar 

  • Rome LC, Funke RP, Alexander RM, Lutz G, Aldridge H, Scott, F, Freadman M (1988) Why animals have different fiber types. Nature 335:824–827

    Article  PubMed  CAS  Google Scholar 

  • Rome LC, Funke RP, Alexander RM (1990) The influence of temperature on muscle velocity and sustained performance in swimming carp. J Exp Biol 154:163–178

    PubMed  CAS  Google Scholar 

  • Rosenfeld SS, Taylor EW (1987) The mechanism of regulation of actomyosin subfragment 1 ATPase. J Biol Chem 262:9984–9993

    PubMed  CAS  Google Scholar 

  • Roy RK, Sreter FA, Sarkar S (1979) Changes in tropomyosin subunits and myosin light chains during development of chicken and rabbit striated muscles. Dev Biol 69:15–30

    Article  PubMed  CAS  Google Scholar 

  • Roy RR, Baldwin KM, Edgerton VR (1991) The plasticity of skeletal muscle: effects of neuromuscular activity. Exerc Sports Sci Rev 19:269–312

    Article  CAS  Google Scholar 

  • Salmons S, Sreter FA (1976) Significance of impulse activity in the transformation of skeletal muscle type. Nature 263:30–34

    Article  PubMed  CAS  Google Scholar 

  • Schachat FH, Diamond MS, Brandt PW (1987) Effect of different troponin T-tropomyosin combinations on thin filament activation. J Mol Biol 198:551–554

    Article  PubMed  CAS  Google Scholar 

  • Schiaffino S, Ausoni S, Gorza L, Saggin L, Gundersen K, Lomo T (1988) Myosin heavy chain isoforms and velocity of shortening of type 2 skeletal muscle fibers. Acta Physiol Scand 134:573–576

    Google Scholar 

  • Schiaffino S, Gorza L, Sartore S, Saggin L, Vianello M, Gundersen K, Lomo T (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibers. J Muscle Res Cell Motil 10:197–205

    Article  PubMed  CAS  Google Scholar 

  • Schmitt TL, Pette D (1991) Fiber type-specific distribution of parvalbumin in rabbit skeletal muscle. Histochemistry 96:459–465

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss T, Lin Z, Lu M-H, Murray J, Fischman D, Weber K, Masaki T, Imanura M, Holtzer H (1990) Differential distribution of subsets of myofibrillar proteins in cardiac striated and nonstriated myofibrils. J Cell Biol 110:1159–1172

    Article  PubMed  CAS  Google Scholar 

  • Seedorf K, Seedorf U, Pette D (1983) Coordinate expression of alkali and DTNB myosin light chains during transformation of rabbit fast muscle by chronic stimulation. FEBS Lett 158:321–324

    Article  PubMed  CAS  Google Scholar 

  • Seow CY, Ford LE (1991) Shortening velocity and power output of skinned muscle fibers from mammals having a 25,000-fold range of body mass. J Gen Physiol 97:541–560

    Article  PubMed  CAS  Google Scholar 

  • Siemankowski RF, Wiseman MO, White HD (1985) ADP dissociation from acto-S1 is sufficiently slow to limit unloaded shortening velocity in muscle. J Biol Chem 260:658–662

    Google Scholar 

  • Sivaramakrishnan M, Burke M (1982) The free heavy chain of vertebrate skeletal myosin subfragment 1 shows full enzymatic activity. J Biol Chem 257:1102–1105

    PubMed  CAS  Google Scholar 

  • Solaro RJ (1986) Protein phosphorylation in heart muscle. CRC, Boca Raton, pp 129–156

    Google Scholar 

  • Sreter FA, Seidel JC, Gergely J (1966) Studies on myosin from red and white skeletal muscles of the rabbit. I. Adenosine triphosphatase activity. J Biol Chem 241:5772–5776

    PubMed  CAS  Google Scholar 

  • Staron RS, Pette D (1986) Correlation between myofibrillar ATPase activity and myosin heavy chain composition in rabbit muscle fibers. Histochem 86:19–23

    Article  CAS  Google Scholar 

  • Staron RS, Pette D (1987) The multiplicity of myosin light and heavy chain combinations in histochemically typed single fibers. Biochem J 243:695–699

    PubMed  CAS  Google Scholar 

  • Stephenson DG, Williams DA (1981) Calcium-activated force response in fast-and slow-twitch skinned muscle fibres of the rat at different temperatures. J Physiol (Lond) 317:281–302

    PubMed  CAS  Google Scholar 

  • Stephenson DG, Williams DA (1982) Effects of sarcomere length on the force-pCa relation in fast-and slow-twitch skinned muscle fibres from the rat. J Physiol (Lond) 333:637–653

    PubMed  CAS  Google Scholar 

  • Swartz DR, Moss RL (1992) Influence of a strong-binding myosin analog on calcium sensitive mechanical properties of skinned skeletal muscle fibers. J Biol Chem 267:20497–20506

    PubMed  CAS  Google Scholar 

  • Sweeney HL, Stull JT (1990) Alteration of cross-bridge kinetics by myosin light chain phosphorylation: implications for regulation of actin-myosin interaction. Proc Natl Acad Sci USA 87:414–418

    Article  PubMed  CAS  Google Scholar 

  • Sweeney HL, Kushmerick MJ, Mabuchi K, Gergely J, Sreter FA (1986) Velocity of shortening and myosin isozymes in two types of rabbit fast-twitch muscle fibers. Am J Physiol 251:C431–434

    PubMed  CAS  Google Scholar 

  • Sweeney HL, Kushmerick MJ, Mabuchi K, Sreter FA, Gergely J (1988) Myosin alkali light chain and heavy chain variations correlate with altered shortening velocity of isolated skeletal muscle fibers. J Biol Chem 263:9034–9039

    PubMed  CAS  Google Scholar 

  • Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol 264:C1085–C1095

    PubMed  CAS  Google Scholar 

  • Sweitzer NK, Moss RL (1990) The effect of altered temperature on Ca2+ sensitive force in skinned single cardiac myocytes — evidence for force dependence of thin filament activation. J Gen Physiol 96:1221–1245

    Article  PubMed  CAS  Google Scholar 

  • Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66:710–771

    PubMed  CAS  Google Scholar 

  • Syrovy I (1987) Isoforms of contractile proteins. ProG Biophys Mol Biol 49:1–27

    Article  PubMed  CAS  Google Scholar 

  • Teichholz LE, Podolsky RJ (1970) The relation between calcium and contraction kinetics in skinned muscle fibres. J Physiol (Lond) 211:19–35

    PubMed  Google Scholar 

  • Templeton GH, Padalino M, Manton J, Glasberg M, Silver CJ, Silver P, DeMartino G, Leconet T, Klug G, Hagler H, Sutko JL (1984) Influence of suspension hypokinesia on rat soleus muscle. J Appl Physiol 56:278–286

    PubMed  CAS  Google Scholar 

  • Termin A, Staron RS, Pette D (1989a) Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry 92:453–457

    Article  PubMed  CAS  Google Scholar 

  • Termin A, Staron RS, Pette D (1989b) Changes in myosin heavy chain isoforms during chronic low-frequency stimulation of rat fast hindlimb muscles — a single fiber study. Eur J Biochem 186:749–754

    Article  PubMed  CAS  Google Scholar 

  • Thomason DB, Baldwin KM, Herrick RE (1986) Myosin isozyme distribution in rodent hindlimb skeletal muscle. J Appl Physiol 60:1923–1931

    PubMed  CAS  Google Scholar 

  • Thomason DB, Herrick RE, Surdyka D, Baldwin KM (1987) Time course of soleus muscle myosin expression during hindlimb suspension and recovery. J Appl Physiol 63:130–137

    PubMed  CAS  Google Scholar 

  • Tsika RW, Herrick RE, Baldwin KM (1987a) Subunit composition of rodent isomyosins and their distribution in hindlimb skeletal muscles. J Appl Physiol 63:2101–2110

    PubMed  CAS  Google Scholar 

  • Tsika RW, Herrick RE, Baldwin KM (1987b) Interaction of compensatory overload and hindlimb suspension on myosin isoform expression. J Appl Physiol 62:2180–2186

    PubMed  CAS  Google Scholar 

  • Uyeda TQP, Warrick HM, Kron SJ, Spudich JA (1991) Quantized velocities at low myosin densities in an in vitro motility assay. Nature 352:307–311

    Article  PubMed  CAS  Google Scholar 

  • Wada M, Pette D (1993) Relationships between alkali light-chain complement and myosin heavy-chain isoforms in single fast-twitch fibers of rat and rabbit. Eur J Biochem 214:157–161

    Article  PubMed  CAS  Google Scholar 

  • Wade R, Kedes L (1989) Developmental regulation of contractile protein genes. Annu Rev Physiol 51:179–188

    Article  PubMed  CAS  Google Scholar 

  • Wagner PD, Giniger E (1981) Hydrolysis of ATP and reversible binding to F-actin by myosin heavy chains free of all light chains. Nature 292:560–562

    Article  PubMed  CAS  Google Scholar 

  • Wagner PD, Weeds AG (1977) Studies on the role of myosin alkali light chains: recombination and hybridization of light chains and heavy chains in subfragment 1 preparations. J Mol Biol 109:455–470

    Article  PubMed  CAS  Google Scholar 

  • Walker JW, Lu Z, Moss RL (1992) Effects of Ca2+ on the kinetics of phosphate release in skeletal muscle fibers. J Biol Chem 267:2459–2466

    PubMed  CAS  Google Scholar 

  • Walsh TP, Trueblood C, Evans R, Weber A (1984) Removal of tropomyosin overlap and the co-operative response to increasing calcium concentrations of the acto-subfragment-1 ATPase. J Mol Biol 182:265–269

    Article  Google Scholar 

  • Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 76:3698–3702

    Article  PubMed  CAS  Google Scholar 

  • Wang S-M, Greaser ML, Schultz E, Bulinski JC, Lin JJ-C, Lessard JL (1988) Studies on cardiac myofibrillogenesis with antibodies to titin, actin, tropomyosin, and myosin. J Cell Biol 107:1075–1083

    Article  PubMed  CAS  Google Scholar 

  • Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R (1991) Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci USA 88:7101–7105

    Article  PubMed  CAS  Google Scholar 

  • Wang K, McCarter R, Wright J, Beverly J, Ramirez-Mitchell R (1993) Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Biophys J 64:1161–1177

    PubMed  CAS  Google Scholar 

  • Whiting A, Wardale J, Trinick J (1989) Does titin regulate the length of muscle thick filaments? J Mol Biol 205:263–268

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson JM (1980) Troponin C from rabbit slow skeletal and cardiac muscle is the product of a single gene. Eur J Biochem 103:179–188

    Article  PubMed  CAS  Google Scholar 

  • Williams DL, Greene LE, Eisenberg E (1988) Cooperative turning on of myosin S1 ATPase activity by the troponin-tropomyosin-actin complex. Biochemistry 27:6987–6993

    Article  PubMed  CAS  Google Scholar 

  • Winiarski AM, Roy RR, Alford EK, Chiang PC, Edgerton VR (1987) Mechanical properties of rat skeletal muscle after hind limb suspension. Exp Neurol 96:650–660

    Article  PubMed  CAS  Google Scholar 

  • Woledge RC, Curtin NA, Homsher E (1985) Energetic aspects of muscle contraction. Academic, London, pp 47–71

    Google Scholar 

  • Yoshidomi H, Ohashi K, Maruyama K (1985) Changes in the molecular size of connectin, an elastic protein, in chicken muscle during embryonic and neonatal development. Biomed Res 4:207–212

    Google Scholar 

  • Zot HG, Potter JD (1982) A structural role for the Ca2+-Mg2+ binding sites on troponin-C in muscle contraction. J Biol Chem 257:7678–7683

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag

About this chapter

Cite this chapter

Moss, R.L., Diffee, G.M., Greaser, M.L. (1995). Contractile properties of skeletal muscle fibers in relation to myofibrillar protein isoforms. In: Reviews of Physiology, Biochemistry and Pharmacology, Volume 126. Reviews of Physiology, Biochemistry and Pharmacology, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049775

Download citation

  • DOI: https://doi.org/10.1007/BFb0049775

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58477-3

  • Online ISBN: 978-3-540-48992-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics