Skip to main content

Neural dynamics with stochasticity

  • Chapter
  • First Online:
Adaptive Processing of Sequences and Data Structures (NN 1997)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1387))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Adleman. Two theorems on random polynomial time. In IEEE Sympos. on Foundations of Computer Science, volume 19, pages 75–83, New-York, 1978.

    MathSciNet  Google Scholar 

  2. J. L. Balcázar, J. Díaz, and J. Gabarró. Structural Complexity, volume I and II. Springer-Verlag EATCS Monographs, Berlin, 1988–1990. Second Edition for Volume I in 1995.

    Google Scholar 

  3. J. L. Balcázar, M. Hermo, and E. Mayordomo. Characterizations of logarithmic advice complexity classes. Information Processing 92, IFIP Transactions A-12, 1:315–321, 1992.

    Google Scholar 

  4. A.R. Barron. Neural net approximation. In Proc. Seventh Yale Workshop on Adaptive and Learning Systems, pages 69–72, Yale University, 1992.

    Google Scholar 

  5. E.B. Baum and D. Haussler. What size net gives valid generalization? Neural Computation, 1:151–160, 1989.

    Google Scholar 

  6. L. Blum, M. Shub, and S. Smale. On a theory of computation and complexity over the real numbers: Np completeness, recursive functions, and universal machines. Bull. A.M.S., 21:1–46, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  7. G.J. Chaitin. On the length of programs for computing finite binary sequences: statistical considerations. J. A.C.M., 16:145–159, 1969.

    MATH  MathSciNet  Google Scholar 

  8. G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control, Signals, and Systems, 2:303–314, 1989.

    MATH  MathSciNet  Google Scholar 

  9. R.L. Dobrushin and S.I. Ortyukov. Lower bound for the redundancy of self-correcting arrangement of unreliable functional elements. Problems info, Transmission, 13:59–65, 1977.

    Google Scholar 

  10. R.L. Dobrushin and S.I. Ortyukov. Upper bound for the redundancy of self-correcting arrangement of unreliable functional elements. Problems info, Transmission, 13:346–353, 1977.

    Google Scholar 

  11. Y. Finkelstein. Cholinergic Mechanisms of Control and Adaptation in the Rat Septo-Hippocampus under Stress Conditions. PhD thesis, Hebrew University in Jerusalem, Israel, 1994.

    Google Scholar 

  12. J.A. Franklin. On the approximate realization of continuous mappings by neural networks. Neural Networks, 2:183–192, 1989.

    Article  Google Scholar 

  13. S. Franklin and M. Garzon. Neural computability. In O. M. Omidvar, editor, Progress In Neural Networks, pages 128–144. Ablex, Norwood, NJ, 1990.

    Google Scholar 

  14. M. Garzon and S. Franklin. Neural computability. In Proc. 3rd Int. Joint Conf. Neural Networks, volume II, pages 631–637, 1989.

    Article  Google Scholar 

  15. C.L. Giles, B.G. Horne, and T. Lin. Learning a class of large finite state machines with a recurrent neural network. Neural Networks, 1995. In press.

    Google Scholar 

  16. R. Hartley and H. Szu. A comparison of the computational power of neural network models. In Proc. IEEE Conf. Neural Networks, pages 17–22, 1987.

    Google Scholar 

  17. S. Haykin. Neural Networks: A Comprehensive Foundation. IEEE Press, New York, 1994.

    MATH  Google Scholar 

  18. J.W. Hong. On connectionist models. On Pure and Applied Mathematics, 41, 1988.

    Google Scholar 

  19. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.

    Google Scholar 

  20. K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4:251–257, 1991.

    Article  Google Scholar 

  21. K. Hornik, M. Stinchcombe, and H. White. Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks. Neural Networks, 3:551–560, 1990.

    Article  Google Scholar 

  22. R.M. Karp and R.J. Lipton. Some connections between uniform and nonuniform complexity classes. In Proceedings of 12th ACM Symp. on Theory of Computing, pages 302–309, 1980.

    Google Scholar 

  23. J. Kilian and H.T. Siegelmann. On the power of sigmoid neural networks. In Proc. Sixth ACM Workshop on Computational Learning Theory, Santa Cruz, July 1993.

    Google Scholar 

  24. G.I. Kirienko. Sintez samokottektiruyshchikhsya skhem iz funktsionalnykh elementov dlya aluchava tastushchego chisla oshibok v skheme. Diskret. Anal., 16:38–43, 1970.

    MATH  MathSciNet  Google Scholar 

  25. K. Ko. On helping by robust oracle machines. Theoretical Computer Science, 52, 1987, 15–36.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Koiran, M. Cosnard, and M. Garzon. Computability with low-dimensional dynamical systems. Theoretical Computer Science, 132:113–128, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  27. W. Maass, G. Schnitger, and E.D. Sontag. On the computational power of sigmoid versus boolean threshold circuits. In Proc. 32nd IEEE Symp. Foundations of Comp. Sci, pages 767–776, 1991.

    Google Scholar 

  28. M. Matthews. On the uniform approximation of nonlinear discrete-time fading-memory systems using neural network models. Technical Report Ph.D. Thesis, ETH No. 9635, E.T.H. Zurich, 1992.

    Google Scholar 

  29. C.B. Miller and C.L. Giles. Experimental comparison of the effect of order in recurrent neural networks. International Journal of Pattern Recognition and Artificial Intelligence, 7(4):849–872, 1993. Special Issue on Neural Networks and Pattern Recognition, editors: I. Guyon, P.S.P. Wang.

    Article  Google Scholar 

  30. A. A. Muchnik and S. G. Gindikin. The completeness of a system made up of non-reliable elements realizing a function of algebraic logic. Soviet Phys. Dokl, 7:477–479, 1962.

    Google Scholar 

  31. P. Orponen. Neural networks and complexity theory. In Proc. 17th Symposium on Mathematical Foundations of Computer Science, pages 50–61, 1992.

    Google Scholar 

  32. S.I. Ortyukov. Synthesis of asymptotically nonredundant self-correcting arrangements of unreliable functional elements. Problems Inform. Transmission, 13:247–251, 1978.

    Google Scholar 

  33. I. Parberry. Circuit Complexity and Neural Networks. MIT Press, 1994.

    Google Scholar 

  34. A. Paz. Introduction to Probabilistic Automata. Academic Press, New York, 1971.

    MATH  Google Scholar 

  35. N. Pippenger. Reliable computation by formulae in the presence of noise. IEEE Trans. Inform. Theory, 34:194–197, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  36. N. Pippenger. Invariance of complexity measure of networks with unreliable gates. J. ACM, 36:531–539, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  37. N. Pippenger. Developments in: The synthesis of reliable organisms from unreliable components. In Proc. of symposia in pure mathematics, volume 5, pages 311–324, 1990.

    MathSciNet  Google Scholar 

  38. J. B. Pollack. On Connectionist Models of Natural Language Processing. PhD thesis, Computer Science Dept, Univ. of Illinois, Urbana, 1987.

    Google Scholar 

  39. M. M. Polycarpou and P.A. Ioannou. Identification and control of nonlinear systems using neural network models: Design and stability analysis. Technical Report 91-09-01, Department of EE/Systems, USC, Los Angeles, Sept 1991.

    Google Scholar 

  40. C. E. Shannon. A mathematical theory of communication. Bell System Tech J., pages 379–423, 623–656, 1948.

    Google Scholar 

  41. H. T. Siegelmann. On nil: The software constructor of neural networks. Parallel Processing Letters, 6(4):575–582, 1996.

    Article  Google Scholar 

  42. H. T. Siegelmann and E. D. Sontag. Turing computability with neural nets. Appl. Math. Lett., 4(6):77–80, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. T. Siegelmann and E. D. Sontag. Analog computation via neural networks. Theoretical Computer Science, 131, 1994. 331–360.

    Article  MathSciNet  MATH  Google Scholar 

  44. H. T. Siegelmann and E. D. Sontag. On computational power of neural networks. J. Comp. Syst. Sci, 50(1): 132–150, 1995. Previous version appeared in Proc. Fifth ACM Workshop on Computational Learning Theory, pages 440–449, Pittsburgh, July 1992.

    Article  MathSciNet  MATH  Google Scholar 

  45. H.T. Siegelmann, B.G. Horne, and C.L. Giles. Computational capabilities of recurrent narx neural networks. Technical Report UMIACS-TR-95-12 and CS-TR-3408, Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, 1995.

    Google Scholar 

  46. E.D. Sontag. Neural nets as systems models and controllers. In Proc. Seventh Yale Workshop on Adaptive and Learning Systems, pages 73–79, Yale University, 1992.

    Google Scholar 

  47. E.D. Sontag. Neural networks for control. In H.L. Trentelman and J.C. Willems, editors, Essays on Control: Perspectives in the Theory and its Applications. Birkhauser, Boston, 1993.

    Google Scholar 

  48. M. Stinchcombe and H. White. Approximating and learning unknown mappings using multilayer feedforward networks with bounded weights. In Proceedings of the International Joint Conference on Neural Networks, IEEE, 1990.

    Google Scholar 

  49. H.J. Sussmann. Uniqueness of the weights for minimal feedforward nets with a given input-output map. Neural Networks, 5:589–593, 1992.

    Article  Google Scholar 

  50. D. Ulig. On the synthesis of self-correcting schemes from functional elements with a small numer of reliable elements. Math. Notes. Acad. Sci. USSR, 15:558–562, 1974.

    Article  MathSciNet  Google Scholar 

  51. J. von Neumann. Probabilistic, logics and the synthesis of reliable organisms from unreliable components. In C.E. Shannon and J. McCarthy, editors, Automata Studies. Princeton U. Press, Princeton, NJ, 1956.

    Google Scholar 

  52. N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series. MIT Press, Cambridge, MA, 1949.

    MATH  Google Scholar 

  53. D. Wolpert. A computationally universal field computer which is purely linear. Technical Report LA-UR-91-2937, Los Alamos National Laboratory, 1991.

    Google Scholar 

  54. S. Zachos. Robustness of probabilistic computational complexity classes under definitional perturbations. Information and Control, 54:143–154, 1982.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

C. Lee Giles Marco Gori

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Siegelmann, H.T. (1998). Neural dynamics with stochasticity. In: Giles, C.L., Gori, M. (eds) Adaptive Processing of Sequences and Data Structures. NN 1997. Lecture Notes in Computer Science, vol 1387. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054004

Download citation

  • DOI: https://doi.org/10.1007/BFb0054004

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64341-8

  • Online ISBN: 978-3-540-69752-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics