Skip to main content

Extrapolation in the finite element method with penalty

  • Conference paper
  • First Online:
Constructive and Computational Methods for Differential and Integral Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 430))

  • 377 Accesses

Abstract

Consider the model problem Δu=f in Ω, u=0 on δΩ. Here Ω is a bounded open subset of Rn with smooth boundary, δΩ. The penalty method provides a method for obtaining an approximate solution without requiring the approximant to satisfy boundary conditions. Unfortunately, we pay a price for this convenience, namely loss of accuracy. We show that this difficulty may be alleviated by a particular type of extrapolation process. For a particular choice of boundary weight in the penalty method we show that repeated extrapolation always yields "optimal" error estimates in the energy norm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. P. Aubin, Approximation des problèms aux limites non homogenes et régularité de la convergence, Calcolo, 6(1969), pp. 117–139.

    Article  MATH  Google Scholar 

  2. I. Babuška, The finite element method with penalty, Math. Comp., 27(1973), pp. 221–228.

    Article  MathSciNet  MATH  Google Scholar 

  3. _____, Approximations by hill functions, Comment. Math. Univ. Carolinae, 11(1970), pp. 787–811.

    MathSciNet  MATH  Google Scholar 

  4. A. Berger, R. Scott, G. Strang, Approximate boundary conditions in the finite element method, Symposia Mathematica, Academic Press, New York, 1972, pp. 295–313.

    Google Scholar 

  5. J. H. Bramble and S. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation, SIAM Num. Anal., 7(1970), pp. 112–124.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. H. Bramble and J. Nitsche, A generalized Ritz-least-squares method for Dirichlet problems, SIAM Num. Anal., 10(1973), pp. 81–93.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. H. Bramble and A. H. Schatz, Releigh-Ritz-Galerkin methods for Dirichlet's problem using subspaces without boundary conditions, Comm. Pure Appl. Math., 23(1970), pp. 653–675.

    Article  MathSciNet  MATH  Google Scholar 

  8. __________, Least-squares methods for 2mth order elliptic boundary value problems, Math. Comp., 25(1970), pp. 1–33.

    MathSciNet  MATH  Google Scholar 

  9. J. H. Bramble, M. Zlamal, Triangular elements in the finite element method, Math. Comp., 24(1970), pp. 809–820.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Amer. Math. Soc., 49(1942), pp. 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. E. Dendy, Penalty Galerkin methods for partial differential equations, Ph.D. thesis, Rice University, 1971.

    Google Scholar 

  12. G. Fix, K. Larsen, On the convergence of SOR iterations for finite element approximations to elliptic boundary value problems, SIAM Num. Anal., 8(1971), pp. 536–547.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. T. King, New error bounds for the penalty method and extrapolation, Numer. Math., to appear.

    Google Scholar 

  14. J. L. Lions, E. Magenes, Problèmes aux Limites non Homogènes et Applications, Vol. 1, Dunod, Paris, 1968.

    MATH  Google Scholar 

  15. J. Nitsche, On Dirichlet problems using subspaces with nearly zero boundary conditions, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press (A. K. Aziz, editor), New York, 1972, pp. 603–627.

    Chapter  Google Scholar 

  16. M. H. Schultz, Multivariate spline functions and elliptic problems, SIAM Num. Anal., 6(1969), pp. 523–538.

    Article  MATH  Google Scholar 

  17. S. Serbin, A computational investigation of least squares and other projection methods for the approximate solution of boundary value problems, Ph.D. thesis, Cornell University, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

David Lem Colton Robert Pertsch Gilbert

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag

About this paper

Cite this paper

King, J.T. (1974). Extrapolation in the finite element method with penalty. In: Colton, D.L., Gilbert, R.P. (eds) Constructive and Computational Methods for Differential and Integral Equations. Lecture Notes in Mathematics, vol 430. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0066273

Download citation

  • DOI: https://doi.org/10.1007/BFb0066273

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07021-4

  • Online ISBN: 978-3-540-37302-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics