Skip to main content

Independent component analysis of human brain waves

  • Bio-inspired Systems
  • Conference paper
  • First Online:
Engineering Applications of Bio-Inspired Artificial Neural Networks (IWANN 1999)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1607))

Included in the following conference series:

  • 184 Accesses

Abstract

Recent years have seen a considerable increase in knowledge about the human brain, both in the understanding of some of the most basic human processing systems, and in the eleboration of efficient computational neuroscience models. In a bootstrapping (reinforced) manner, the discoveries made on the human brain are leading into the formulation of more efficient computational methods which in turn make it possible to design new signal processing tools for better extracting information from brain data.

In this paper, we will review one of such signal processing tools, the independent component analysis (ICA), that belongs to the class of artificial neural networks. It will be shown how this technique suits the problem of artifact detection, and removal, both in electroencephalographic and magnetoencephalographic recordings. Furthermore, when applied to the evoked field paradigm, ICA separates the complex brain responses into simpler components than the conventional principal component analysis (PCA) approach. This sparse division may lead to an improvement in the interpretation of such event related signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. FastICA MATLAB package. Available at the WWW adress: http://www.cis.hut.fi/projects/ica/fastica.

    Google Scholar 

  2. S. Amari. Blind source separation-mathematical foundations. In S. Amari and N. Kasabov, editors, Brain-like Computing and Intelligent Information Systems, pages 153–166. Springer, Singapore, 1997.

    Google Scholar 

  3. J. S. Barlow. Computerized clinical electroencephalography in perspective. IEEE Trans. Biomed. Eng., 26:377–391, 1979.

    MathSciNet  Google Scholar 

  4. A. Bell and T. Sejnowski. An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7:1129–1159, 1995.

    Google Scholar 

  5. P. Berg and M. Scherg. A multiple source approach to the correction of eye artifacts. Electroenceph. clin. Neurophysiol., 90:229–241, 1994.

    Article  Google Scholar 

  6. A. Cichocki and R. Unbehauen. Robust neural networks with on-line learning for blind identification and blind separation of sources. IEEE Trans. on Circuits and Systems, 43(11):894–906, 1996.

    Article  Google Scholar 

  7. P. Common. Independent component analysis—a new concept? Signal Processing, 36:287–314, 1994.

    Article  Google Scholar 

  8. M. Hämäläinen, R. Hari, R. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa. Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 65(2):413–497, April 1993.

    Article  Google Scholar 

  9. R. Hari. Magnetoencephalography as a tool of clinical neurophysiology. In E. Niedermeyer and F. L. da Silva, editors, Electroencephalography. Basic principles, clinical applications, and related fields, pages 1035–1061. Baltimore: Williams & Wilkins, 1993.

    Google Scholar 

  10. A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component analysis. Neural Computation, 9:1483–1492, 1997.

    Article  Google Scholar 

  11. A. Hyvärinen and E. Oja. Independent component analysis by general non-linear hebbian-like learning rules. Signal Processing, 64(3):301–313, 1998.

    Article  MATH  Google Scholar 

  12. V. Jousmäki and R. Hari. Somatosensory evoked fields to large-area vibrotactile stimuli. Electroenceph. clin. Neurophysiol., 1998. Submitted.

    Google Scholar 

  13. T.-P. Jung, C. Humphries, T.-W. Lee, S. Makeig, M. J. McKeown, V. Iragui, and T. Sejnowski. Extended ICA removes artifacts from electroencephalographic recordings. In Neural Information Processing Systems 10 (Proc. NIPS'97). MIT Press, 1998.

    Google Scholar 

  14. C. Jutten and J. Herault. Blind separation of sources, part i: an adaptive algorithm based on neuromimetic architecture. Signal Processing, 24:1–10, 1991.

    Article  MATH  Google Scholar 

  15. J. Karhunen, A. Cichocki, W. Kasprzak, and P. Pajunen. On neural blind separation with noise supression and redundancy reduction. Int. J. Neural Systems, 8(2):219–237, 1997.

    Article  Google Scholar 

  16. F. Lopes da Silva. Event-related potentials: Methodology and quantification. In E. Niedermeyer and F. Lopes da Silva, editors, Electroencephalography. Basic principles, clinical applications, and related fields, pages 877–886. Baltimore: Williams & Wilkins, 1993.

    Google Scholar 

  17. S. Makeig, T.-P. Jung, A. Bell, D. Ghahremani, and T. Sejnowski. Blind separation of auditory event-related brain responses into independent components. Proc. Natl. Acad. Sci. USA, 94:10979–10984, 1997.

    Article  Google Scholar 

  18. E. Oja, J. Karhunen, A. Hyvärinen, R. Vigário, and J. Hurri. Neural independent component analysis-approaches and applications. In S. Amari and N. Kasabov, editors, Brain-like Computing and Intelligent Information Systems, pages 167–188. Springer, Singapore, 1997.

    Google Scholar 

  19. J. Särelä, R. Vigário, V. Jousmäki, R. Hari, and E. Oja. ICA for the extraction of auditory evoked fields. In 4th International Conference on Functional Mapping of the Human Brain (HBM'98), Montreal, Canada, 1998.

    Google Scholar 

  20. M. A. Uusitalo and R. J. Ilmoniemi. The signal-space projection (ssp) method for separating meeg or eeg into components. Medical & Biological Engineering & Computing, 35:135–140, 1997.

    Google Scholar 

  21. R. Verleger. Valid identification of blink artifacts: are they larger than 50 μv in EEG records? Electroenceph. clin. Neurophysiol., 87:354–363, 1993.

    Article  Google Scholar 

  22. R. Vigário. Extraction of ocular artifacts from EEG using independent component analysis. Electroenceph. clin. Neurophysiol., 103:395–404, 1997.

    Article  Google Scholar 

  23. R. Vigário, V. Jousmäki, M. Hämäläinen, R. Hari, and E. Oja. Independent component analysis for identification of artifacts in magnetoencephalographic recordings. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Neural Information Processing Systems 10 (Proc. NIPS'97), Cambridge MA, 1998. MIT Press.

    Google Scholar 

  24. R. Vigário, J. Särelä, V. Jousmäki, and E. Oja. Independent component analysis in decomposition of auditory and somatosensory evoked fields. In Proc. Int. Workshop on Independent Component Analysis and Blind Separation of Signals (ICA'90), Aussois, France, January 1999.

    Google Scholar 

  25. R. Vigário, J. Särelä, and E. Oja. Independent component analysis in wave decomposition of auditory evoked fields. In Proc. Int. Conf. on Artificial Neural Networks (ICANN'98), Skövde, Sweden, September 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira Juan V. Sánchez-Andrés

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vigário, R., Oja, E. (1999). Independent component analysis of human brain waves. In: Mira, J., Sánchez-Andrés, J.V. (eds) Engineering Applications of Bio-Inspired Artificial Neural Networks. IWANN 1999. Lecture Notes in Computer Science, vol 1607. Springer, Berlin, Heidelberg . https://doi.org/10.1007/BFb0100490

Download citation

  • DOI: https://doi.org/10.1007/BFb0100490

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66068-2

  • Online ISBN: 978-3-540-48772-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics