Skip to main content

Stable, metastable and unstable oil-in-water droplets

  • Plenary
  • Conference paper
  • First Online:
Formation and Dynamics of Self-Organized Structures in Surfactants and Polymer Solutions

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 106))

  • 119 Accesses

Abstract

In this paper we bring together some recent results concerning the stability and properties of O/W microemulsion droplets in a ternary system composed of water, decane and the nonionic surfactant pentaethylene glycol dodecylether (C12E5). Stable microemulsion droplets can be prepared when the spontaneous curvature has a finite but not too low value. Near the limit of maximum oil solubilisation the droplets adopt a spherical shape with low polydispersity. Experimental results obtained from low shear viscosity, collective and long time self-diffusion and static light scattering show that the spherical droplets interact to a very good approximation as hard spheres over a large range of volume fractions. A supersaturated microemulsion can be prepared by a rapid temperature quench (drop) into the two-phase area where a smaller droplet size coexists with excess oil. In the two-phase area, we can distinguish a region near the microemulsion phase boundary where the droplets are metastable, from a region further away from the boundary where the droplets are unstable and the oil-phase nucleates instantaneously. Treating the initial phase separation as a homogeneous nucleation it is possible to calculate an activation energy within the curvature energy approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olsson U, Wennerström H (1994) Adv Colloid Interface Sci 49:113–146

    Article  CAS  Google Scholar 

  2. Safran SA (1994) Statistical Thermodynamics of Surfaces, Interfaces, and Membrances. Addison-Wesley, Reading, MA

    Google Scholar 

  3. Olsson U, Schurtenberger P (1993) Langmuir 9:3389–3394

    Article  CAS  Google Scholar 

  4. Leaver MS, Olsson U (1994) Langmuir 10:3449–3454

    Article  CAS  Google Scholar 

  5. Bagger-Jörgensen H, Olsson U, Mortensen K (1997) Langmuir 13:1413–1421

    Article  Google Scholar 

  6. Helfrich W (1973) Z Naturforsch 28c:693–703

    Google Scholar 

  7. Pieruschka P, Safran SA (1993) Europhys Lett 22:625–630

    Article  CAS  Google Scholar 

  8. Porte G, Appell J, Bassereau P, Marignan L (1989) J Phys France 50:1335–1347

    Article  CAS  Google Scholar 

  9. Porte G, Delsant M, Billard I, Skouri M, Appell J, Marignan J, Debeauvais F (1991) J Phys France II 1:1101–1120

    Article  CAS  Google Scholar 

  10. Daicic J, Olsson U, Wennerström H, Jerke G, Schurtenberger P (1995) J Phys II France 5:199–215

    Article  CAS  Google Scholar 

  11. Safran SA, Turkevich LA, Pincus PA (1984) J Phys Lett 45:L69

    Article  Google Scholar 

  12. Strey R, Schomäcker R, Roux D, Nallet F, Olsson U (1990) J Chem Soc Faraday Trans 86:2253–2261

    Article  CAS  Google Scholar 

  13. Leaver MS, Olsson U, Wennerström H, Strey R (1994) J Phys II 4:515–531

    Article  CAS  Google Scholar 

  14. Leaver M, Furó I, Olsson U (1995) Langmuir 11:1524–1529

    Article  CAS  Google Scholar 

  15. Rajagopalan V, Bagger-Jörgensen H, Fukuda K, Olsson U, Jönsson B (1996) Langmuir 12:2939–2946

    Article  CAS  Google Scholar 

  16. Strey R (1994) Colloid Polym Sci 272:1005–1019

    Article  CAS  Google Scholar 

  17. Carnahan NF, Starling KE (1969) J Chem Phys 51:635

    Article  CAS  Google Scholar 

  18. van der Werff JC, de Kruif CG (1989) J. Rheol 33:421–454

    Article  Google Scholar 

  19. Quemada D (1977) Rheol Acta 16:82–94

    Article  Google Scholar 

  20. Einstein A (1956) Investigations on the Theory of the Brownian Motion. Dover, New York

    Google Scholar 

  21. Kops-Werkhoven MM, Fijnaut HM (1981) J Chem Phys 74:1618

    Article  CAS  Google Scholar 

  22. van Megen W, Underwood SM (1989) J Chem Phys 91:552

    Article  Google Scholar 

  23. Packhurst Jr. HJ, Jonas J (1975) J Chem Phys 63:2698, 2705

    Article  Google Scholar 

  24. van Bladeren A, Peetermans J, Maret G, Dhont JKG (1992) J Chem Phys 96:4591

    Article  Google Scholar 

  25. Morris J, Olsson U, Wennerström H (1997) Langmuir 13:606–608

    Article  CAS  Google Scholar 

  26. Morris J, Olsson U, Wennerström H (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Kawasaki B. Lindman H. Okabayashi

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Steinkopff Verlag

About this paper

Cite this paper

Olsson, U. et al. (1997). Stable, metastable and unstable oil-in-water droplets. In: Kawasaki, K., Lindman, B., Okabayashi, H. (eds) Formation and Dynamics of Self-Organized Structures in Surfactants and Polymer Solutions. Progress in Colloid & Polymer Science, vol 106. Steinkopff. https://doi.org/10.1007/BFb0111022

Download citation

  • DOI: https://doi.org/10.1007/BFb0111022

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1096-8

  • Online ISBN: 978-3-7985-1659-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics