Skip to main content

Sponge-like structures and their Gaussian curvatures in polymer mixtures and microemulsions

  • Formation of Structures in Surfactant-Polymer Solutions
  • Conference paper
  • First Online:
Formation and Dynamics of Self-Organized Structures in Surfactants and Polymer Solutions

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 106))

Abstract

Bicontinuous structures formed in the late stage of spinodal decomposition (SD) in polymer mixtures were explored experimentally by time-resolved light scattering (TLS) and laser scanning confocal microscopy (LSCM) and computationally by three-dimensional (3D) simulations based on time-dependent Ginzburg-Landau (TDGL) theory. The 3D structures constructed by LSCM exhibited a sponge-like structure and were found to be statistically identical to those constructed by the computer simulations through equality of their scattering structure factors. Moreover, their structure factors were found to be identical to that obtained by TLS, revealing that the 3D structures truly reflect the structure entities occurring in the polymer mixtures and that the TDGL theory accounts for the phase structures evolving in the late stage SD. Gaussian curvature K and mean curvature H were evaluated from the 3D structures, the results of which were compared with the “scattering-mean-curvature” determined by using the Kirste-Porod theory and with K determined by using a Gaussian random-field theory. The sponge-like structure was found to be strikingly similar to that occurring in an equilibrium microemulsion system at the hydrophile-lipophile balance temperature, though their characteristic length scales are different by two-three orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, for example, Gunton JD, San Miguel M, Sahni PS (1983) In: Domb C, Lebowitz JL (eds) Phase Transitions and Critical Phenomena. Academic Press, New York, pp 269–482; Binder K (1991) In: Cahn RW, Haasen P, Kramer EJ (eds) Materials Science and Technology. Vol 5, Phase Transformations in Materials. Haasen P (Vol ed) VCH, Weinheim, pp 143–212; Komura S, Furukawa H (eds) (1988) Dynamics of Ordering Processes in Condensed Matter. Plenum, New York

    Google Scholar 

  2. Cahn JW (1965) J Chem Phys 42:93–99

    Article  CAS  Google Scholar 

  3. See. for example, Hashimoto T (1988) Phase Transitions 12:47–119

    Article  CAS  Google Scholar 

  4. Shinozaki A, Oono Y (1993) Phys Rev E 48:2622–2654

    Article  CAS  Google Scholar 

  5. Koga T, Kawasaki K (1993) Physica A 196:389–415

    Article  Google Scholar 

  6. Wilson T (1990) In: Confocal Microscopy. Academic Press, London, pp 1–64

    Google Scholar 

  7. Hashimoto T (1993) In: Cahn RW, Haasen P, Kramer EJ (eds) Materials Science and Technology. Vol. 12. Structure and Properties of Polymers. Thomas EL (Vol ed) VCH, Weinheim, pp 251–300

    Google Scholar 

  8. Hashimoto T, Itakura M, Hasegawa H (1986) J Chem Phys 85:6118–6128

    Article  CAS  Google Scholar 

  9. Binder K, Stauffer D (1974) Phys Rev Lett 33:1006–1009

    Article  Google Scholar 

  10. Hashimoto T, Jinnai H, Hasegawa H, Han CC (1994) Physica A 204:261–276

    Article  CAS  Google Scholar 

  11. Kawasaki K, Ohta T (1978) Progr Theor Phys 59:362–374; (1983) Physica A 118:175–190

    Article  Google Scholar 

  12. Furukawa H (1989) J Phys Soc Japan 58:216–221

    Article  Google Scholar 

  13. Jinnai H, Nishikawa Y, Hashimoto T. in preparation

    Google Scholar 

  14. Jinnai H, Nishikawa Y, Koga T, Hashimoto T (1995) Macromolecules 28:4782–4784

    Article  CAS  Google Scholar 

  15. Jinnai H, Koga T, Nishikawa Y, Hashimoto T, Hyde ST (1997) Phys Rev Lett 78:2248–2251

    Article  CAS  Google Scholar 

  16. Ribbe A, Jinnai H, Hashimoto T (1996) J Mater Sci 31:5837–5847

    Article  CAS  Google Scholar 

  17. Hashimoto T, Takenaka M, Jinnai H (1991) J Appl Crystallogr 24:457–466; Takenaka M, Hashimoto T (1992) J Chem Phys 96:6177–6190

    Article  CAS  Google Scholar 

  18. Takenaka M, Izumitani T, Hashimoto T (1990) J Chem Phys 92:4566–4575

    Article  CAS  Google Scholar 

  19. Koga T, Kawasaki K, Takenaka M, Hashimoto T (1993) Physica A 198:473–492

    Article  CAS  Google Scholar 

  20. Lorensen WE, Cline HE (1987) Computer Graphics SIGGRAPH'87 21:163–169

    Article  Google Scholar 

  21. Nishikawa Y, Jinnai H, Koga T, Hashimoto T, Hyde ST, submitted to Langmuir

    Google Scholar 

  22. Kirste B, Porod G (1962) Kolloid-Z Z Polym 184:1–7

    Article  CAS  Google Scholar 

  23. Tomita H (1984) Progr Theor Phys 72:656–658

    Article  Google Scholar 

  24. Takenaka M, Hashimoto T, to be submitted

    Google Scholar 

  25. Nishikawa Y, Koga T, Jinnai H, Hashimoto T, in preparation

    Google Scholar 

  26. Berk NF (1987) Phys Rev Lett 58:2718–2721

    Article  CAS  Google Scholar 

  27. Chen SH, Lee DD, Chang SL (1993) J Mol Struct 296:259–264

    Article  CAS  Google Scholar 

  28. Chen SH, Lee DD, Kimishima K, Jinnai H, Hashimoto T (1996) Phys Rev E 54:6526–6531

    Article  Google Scholar 

  29. Jinnai H, Hashimoto T. Lee DD, Chen SH (1997) Macromolecules 30:130–136

    Article  CAS  Google Scholar 

  30. Teubner M, Strey R (1987) J Chem Phys 87:3195–3220

    Article  CAS  Google Scholar 

  31. Chem SH, Chang SL, Strey R (1991) J Appl Crystallogr 24:721–731

    Article  Google Scholar 

  32. Hildebrandt S, Tromba A (1985) Mathematics and Optimal Form. Scientific America Library, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. Kawasaki B. Lindman H. Okabayashi

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Steinkopff Verlag

About this paper

Cite this paper

Hashimoto, T., Jinnai, H., Nishikawa, Y., Koga, T., Takenaka, M. (1997). Sponge-like structures and their Gaussian curvatures in polymer mixtures and microemulsions. In: Kawasaki, K., Lindman, B., Okabayashi, H. (eds) Formation and Dynamics of Self-Organized Structures in Surfactants and Polymer Solutions. Progress in Colloid & Polymer Science, vol 106. Steinkopff. https://doi.org/10.1007/BFb0111042

Download citation

  • DOI: https://doi.org/10.1007/BFb0111042

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-1096-8

  • Online ISBN: 978-3-7985-1659-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics