Skip to main content

Festkörperzerstäubung durch Ionenbeschuß

  • Conference paper
  • First Online:
Ergebnisse der exakten naturwissenschaften

Part of the book series: Ergebnisse der Exakten Naturwissenschaften ((STMP,volume 35))

VII. Zusammenfassung

In diesem Artikel wurde versucht, einen Überblick über den heutigen Stand der Arbeiten über Festkörperzerstäubung zu geben. Nach einer Erläuterung der Voraussetzungen für reproduzierbare Messungen werden die von verschiedenen Autoren erhaltenen Ergebnisse von Zerstäubungsmessungen an polykristallinem Material und an Einkristallen näher diskutiert. Es zeigt sich, daß vor allem die Messungen an Einkristallen noch sehr unvollständig sind. Zerstäubungsmessungen an polykristallinem Material haftet immer eine Unsicherheit an, welche vor allem durch die Textur des Materials bedingt ist. Im theoretischen Teil dieses Artikels wurde der Theorie der Strahlenschäden in Festkörpern ein längerer Abschnitt gewidmet. Eine Anwendung der darin entwickelten Verstellungen zur Berechnung der besonders interessanten Zerstäubungsrate hat noch zu keinen befriedigenden Resultaten geführt. Die Zerstäubungserscheinungen scheinen heute eine der wichtigsten Untersuchungsmethoden zu sein, um über die Strahlenschäden in Festkörpern nähere Auskunft zu erhalten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Almén, O. and G. Bruce: Sputtering experiments in the high energy region. Nucl. Instr. and Methods 11, 279 (1961).

    Article  Google Scholar 

  2. — — Collection and Sputtering experiments with noble gas ions. Nucl. Instr. and Methods 11, 257 (1961).

    Article  Google Scholar 

  3. Anderson, G. S.: Atom ejection in low energy sputtering of single crystals of bcc metals. J. Appl. Phys. 34, 659 (1963).

    Article  Google Scholar 

  4. — Atom ejection in low energy sputtering of single crystals of fcc metals and of Ge and Si. J. Appl. Phys. 33, 2017 (1962).

    Article  Google Scholar 

  5. —, W. N. Mayer and G. K. Wehner: Sputtering of dielectrics by high-frequency fields. J. Appl. Phys. 33, 2991 (1962).

    Article  Google Scholar 

  6. —, and G. K. Wehner: Atom ejection patterns in single-crystal sputtering. J. Appl. Phys. 31, 2305 (1960).

    Article  Google Scholar 

  7. Arifov, U. A., N. N. Flyants and A. K. Ayukhanov: Some properties of secondary ion-neutral emission. Sov. Phys. Doklady 7, 131 (1962).

    Google Scholar 

  8. —, R. R. Rakhimov and K. Dzhurakulov: Secundary emission in the bombardment of molybdenum by neutral atoms and argon ions. Sov. Phys. Doklady 7, 209 (1962).

    Google Scholar 

  9. Bader, M., F. C. Witteborn and T. W. Snouse: Sputtering of metals by mass-analyzed N +2 and N+. NASA Techn. Rep. R-105 (1961).

    Google Scholar 

  10. Balarin, M.: Fokussierungsbedingung für elastische Atomstöße in Graphit. Phys. Stat. sol. 2, 60 (1962).

    Article  Google Scholar 

  11. Baroody, E. M.: Focussing collisions in a linear chain of atoms. Phys. Rev. 124, 745 (1961).

    Article  Google Scholar 

  12. Barrett, Ch. S.: Preferred orientations resulting from cold work. “Structure of Metals”, Kap. 18. New York 1952.

    Google Scholar 

  13. Batanov, G. M.: Ion-ion emission from a sodium chloride single crystal during bombardment by lithium ions. Sov. Phys.-Sol. State 3, 471 (1961).

    Google Scholar 

  14. Bayh, W.: Direkte Sichtbarmachung von Metalloberflächen mit ionenausgelösten Elektronen. Z. Physik 151, 281 (1958).

    Article  Google Scholar 

  15. — Emissionsmikroskopie mit Sekundärelektronen (15 keV-Primärelektronen). Z. Physik 150, 10 (1958).

    Article  Google Scholar 

  16. Beevers, C. J., and D. J. Mazey: Irradiation damage in molybdenum after energetic H+ and H++ ion bombardment. Phil. Mag. 7, 1061 (1962).

    Article  Google Scholar 

  17. Behrisch, R.: Festkörperzerstäubung (Literaturstudie). Vak. Lab. Ber. Nr. 20, MPI f. Phys. Astrophys. München, engl. Übers. UKAERE Harwell 1962, unclassif.

    Google Scholar 

  18. — Zerstäubung von polykristallinem Silber mit 50 keV-Protonen. Diplomarbeit, München (1960).

    Google Scholar 

  19. Behrndt, K.: Die Mikrowaagen in ihrer Entwicklung seit 1886. Z. angew. Phys. 8, 453 (1956).

    Google Scholar 

  20. Bennemann, K. H.: Theoretische Untersuchungen über die Lage des Zwischengitteratoms in Kupfer. Z. Physik 165, 445 (1961).

    Article  Google Scholar 

  21. Bennewitz, H. G. u. R. Wedemeyer: Ein Molekulardetektor mit Elektronenstoßionisierung und Vierpol-Massenfilter. Z. Physik 172, 1 (1963).

    Article  Google Scholar 

  22. Bernard, R., R. Goutte, C. Guillaud and R. Javelas: Origine de l'émission ionique d'une cible métallique bombardée par des ions positifs. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique. Bellevue (1961).

    Google Scholar 

  23. Bierlein, T. K., and B. Mastel: Defect structures observed in neutronbombarded aluminium. J. Appl. Phys. 33, 2873 (1962).

    Article  Google Scholar 

  24. Bohr, N.: The penetration of atomic particles through matter. Math. Fys.Medd. 18, Nr. 8 (1948).

    Google Scholar 

  25. Bonfiglioli, G., A. Ferro and A. Mojoni: Electron microscope investigation on the nature of tracks of fission products in mica. J. Appl. Phys. 32, 2499 (1961).

    Article  Google Scholar 

  26. Bowden, F. P., and L. T. Chadderton: Molecular disarray in a crystal lattice produced by a fission fragment. Nature 192, 31 (1961).

    Article  Google Scholar 

  27. Bradley, R. C.: Diffusion and desorption of metal impurities in platinum. Phys. Rev. 117, 1204 (1960).

    Article  Google Scholar 

  28. Bradley, R. C.: Secondary positive ion emission from metal surfaces. J. Appl. Phys. 30, 1 (1959).

    Article  Google Scholar 

  29. — Sputtering of alkali atoms by inert gas ions of low energy. Phys. Rev. 93, 719 (1954).

    Article  Google Scholar 

  30. A. Arking and D. S. Beers: Secondary positive ion-emission from platinum. J. Chem. Phys. 33, 764 (1960).

    Article  Google Scholar 

  31. —, and E. Rudel: Ions sputtered from copper. J. appl. Phys. 33, 880 (1962).

    Article  Google Scholar 

  32. — — Positive ion emission from metal surfaces. V. Int. Konf. Ionis. Phänomene, München (1961).

    Google Scholar 

  33. Brandon, D. G., and P. Bowden: The low energy ion bombardment of gold. Phil. Mag. 6, 707 (1961).

    Article  Google Scholar 

  34. O'Brian, C. D., A. Lindner and W. J. Moore: Sputtering of silver by hydrogen ions. J. Chem. Phys. 29, 3 (1958).

    Article  Google Scholar 

  35. Brinkman, J. A.: On the nature of radiation damage in metals. J. Appl. Phys. 25, 961 (1954).

    Article  Google Scholar 

  36. Brooks, H.: Radiation effects in materials. J. Appl. Phys. 30, 1118 (1959).

    Article  Google Scholar 

  37. Brown, R. W., P. Wessel and E. P. Trounson: Plasmon reradiation from silver films. Phys. Rev. Letters 5, 472 (1960).

    Article  Google Scholar 

  38. Carmichael, J. H., and E. A. Trendelenburg: Ion induced reemission of noble gases from a nickel surface. J. Appl. Phys. 29, 1570 (1958).

    Article  Google Scholar 

  39. —, and P. M. Waters: Re-emission of ionically pumped helium by helium ion Bombardment. J. Appl. Phys. 33, 1470 (1962).

    Article  Google Scholar 

  40. Carter, G., J. S. Colligon and J. H. Leck: Ion sorption in the presence of sputtering. Proc. Phys. Soc. 79, 299 (1962).

    Article  Google Scholar 

  41. Cassignol, C., et G. Rang: Sur le caractère non linéaire en fonction de l'intensité de la pulvérisation cathodique à haute énergie et sa variation en fonction de la température. Compt. rend. 248, 1988 (1959).

    Google Scholar 

  42. Castaing, R., et B. Jouffrey: Effets d'un bombardement ionique de courte durée sur les monocristaux métalliques. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  43. Cevales, G.: Erzuntersuchung im Emissionsmikroskop. Z. Erzbergbau u. Metallhüttenw. 14, 159 (1961).

    Google Scholar 

  44. Chaudhri, R. M., and M. Y. Khan: Emission of Ultra-Violet and visible radiation from metals by the impact of high-energy hydrogen ions. Nature 192, 646 (1961).

    Article  Google Scholar 

  45. — — Emission of Ultra Violet and visible radiation from metals by the impact of high-energy protons and positive ions. Proc. V. Int. Conf. Ion. Phen. Gases 2, 1195 (1961).

    Google Scholar 

  46. — — Emission of electromagnetic radiation by the impact of positive ions of hydrogen on metal surfaces. Phys. Rev. 104, 1492 (1956).

    Article  Google Scholar 

  47. — — and A. L. Taseer: Emission of photo radiation by the impact of positive ions of helium on nickel. Nature 177, 1226 (1956).

    Article  Google Scholar 

  48. Chiplonkar, V. T., and B. N. Varadrajan: A note — on the dependence of the sputtering produced by bombardment by canal rays on their angle of impact. Indian J. Phys. 33, 127 (1959).

    Google Scholar 

  49. Čobić, B., and B. Perović: Angular distribution of sputtered particles on sputtering rate for high speed ions. Proc. IV. Int. Conf. Ion. Phen. Gases. Uppsala (1960).

    Google Scholar 

  50. Colligon, J. S.: Ion bombardment of metal surfaces. Vacuum 11, 272 (1961).

    Article  Google Scholar 

  51. Craston, J. L., R. Hancox, A. E. Robson, S. Kaufmann, H. T. Miles, A. Ware and J. A. Wesson: The role of materials in controlled thermonuclear research. Proc. 2nd Int. Conf. Atom. Energy 32, 414 (1958).

    Google Scholar 

  52. Cunningham, R. L., P. Haymann, C. Lecomte, W. J. Moore and J. J. Trillat: Etching of surfaces with 8-keV Argon ions. J. Appl. Phys. 31, 839 (1960).

    Article  Google Scholar 

  53. Czarnecki, R., u. F. Hilbert: Anwendung der kathodischen Oxydation zur metallographischen Untersuchung von Uranschliffen. Kernenergie 5, 566 (1962).

    Google Scholar 

  54. Davies, J. A., J. D. McIntyre and G. A. Sims: Isotope effect in heavy ion range studies. Can. J. Chem. 39, 611 (1961).

    Article  Google Scholar 

  55. —, and G. A. Sims: The range of Na24 ions of kiloelectron volt energies in aluminium. Can. J. Chem. 39, 601 (1961).

    Article  Google Scholar 

  56. Debye, P.: Interferenz von Röntgenstrahlen und Wärmebewegung. Ann. Phys. 43, 49 (1914).

    Google Scholar 

  57. Dederichs, P. H., u. G. Leibfried: Fokussierende Stoßfolgen in kubisch flächenzentrierten Kristallen. Z. Physik 170, 320 (1962).

    Article  Google Scholar 

  58. Denoux, M.: Quelques aspects de la pulvérisation du cuivre par des protons d'énergie moyenne. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique. Bellevue (1961).

    Google Scholar 

  59. Dienes, G. J.: Mechanism for self-diffusion in graphite. J. Appl. Phys. 23, 1194 (1952).

    Article  Google Scholar 

  60. —, and G. Vineyard: Radiation effects in solids. New York: McGraw-Hill Book Co. 1957.

    Google Scholar 

  61. Dillon, J. A., and R. M. Oman: Ion-bombardment etching of silicon and germanium. J. Appl. Phys. 31, 26 (1960).

    Article  Google Scholar 

  62. Englander, M., J. Stohr et J. Laniesse: Procédé d'attaque métallographique de l'uranium. Le Vide, No 69 (1957).

    Google Scholar 

  63. Fairbrother, F., and J. S. Foster: Sputtering of stainless steal by protons in the 30–80 keV range. UCRL-4169, Rad. Lab. Univ. Cal., Livermore (1953) and Vak. 4, 112 (1954).

    Google Scholar 

  64. Farnsworth, H. E., T. H. George, R. E. Schlier and R. M. Burger: Application of ion bombardment cleaning method to Ti, Ge, Si, Ni as determined by low energy electron diffraction. J. Appl. Phys. 29, 1150 (1958).

    Article  Google Scholar 

  65. — R. E. Schlier, T. H. George and R. M. Bürger: Ion bombardment-cleaning of germanium and titanium as determined by low-energy electron diffraction. J. Appl. Phys. 26, 252 (1955).

    Article  Google Scholar 

  66. Ferrell, R. A.: Predicted radiation of plasma oscillations in metal films. Phys. Rev. 111, 1214 (1958).

    Article  Google Scholar 

  67. Fert, Ch., N. Colombie, B. Fagot et Phan van Chuong: Bombardement d'une cible métallique par des ions d'énergie moyenne (10 à 150 keV). Pulvérisation cathodique et émission secondaire. Coll Int. Centre Nat. Rech. Sci., Le Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  68. Fetz, H.: Über die Kathodenzerstäubung bei schiefem Aufprall der Ionen. Z. Physik 119, 590 (1942).

    Article  Google Scholar 

  69. Fluit, J. M.: Sputtering of copper single-crystals by 20 keV noble gas ion bombardment as a function of target temperature and as a function of the angle of incidence. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  70. L. Friedman, J. Van Eck, C. Snoek and J. Kistemaker: Photons and metastable atoms produced in sputtering experiments. Proc. V. Int. Conf. Ion. Phen. Gases. München (1961).

    Google Scholar 

  71. — — A. J. H. Boerboom and J. Kistemaker: Isotopic fractionation of lithium in sputtering. J. Chem. Phys. 35, 1143 (1961).

    Article  Google Scholar 

  72. — P. K. Rol and J. Kistemaker: Angular-dependent sputtering of copper single crystals. J. Appl. Phys. 34, 690 (1963).

    Article  Google Scholar 

  73. Fogel, Y. M., R. P. Slabospitskii and J. M. Karnaukhov: Mass-spectrometer investigation of secondary positive and negative ion emission resulting from the bombardment of an Mo surface by positive ions. Sov. Phys. Techn. Phys. 5, 777 (1961).

    Google Scholar 

  74. — — and A. B. Rastrepin: Emission of charged particles from metal surfaces under bombardment by positive ions. Sov. Phys. Techn. Phys. 5, 58 (1960).

    Google Scholar 

  75. Francis, G.: Glow discharge at low pressure. Handbuch der Physik 22, 154 (1956).

    Google Scholar 

  76. Frank, A. L., E. T. Arakawa and R. D. Birkhoff: Optical emission from irradiated foils. II. Phys. Rev. 126, 1947 (1962).

    Article  Google Scholar 

  77. Fricke, G.: Ein universeller Detektor für Molekularstrahlen. Z. Physik 141, 166 (1955).

    Article  Google Scholar 

  78. Fuchs, D.: Über den quantitativen Nachweis von Molekularstrahlen kleiner Intensität durch partielle Neutralisation der Elektronenraumladung in einer Diode. Vak. Tech. 6 u. 7 (1960).

    Google Scholar 

  79. —, u. P. Mecke: Intensitätsbeeinflussung im Röntgenfluoreszenz-Analysen-Diagramm durch Braggsche Reflexionen. Z. angew. Phys. 13, 111 (1961).

    Google Scholar 

  80. Gaukler, K.-H.: Messung der Elektronen-Emission im Metalloberflächenmikroskop. Z. Metallkunde 51, 463 (1960).

    Google Scholar 

  81. Gawehn, H.: Die Berechnung der höchstmöglichen Verunreinigung von Metalldampfschichten durch die Vakuum-Restgase. Z. angew. Phys. 14, 126 (1962).

    Google Scholar 

  82. Gerthsen, C.: Über die von der Aufprallstelle von Wasserstoffkanalstrahlen auf Metalle ausgehenden Strahlungen. Ann. Phys. 85, 881 (1928).

    Article  Google Scholar 

  83. Gibson, J. B., A. N. Goland, M. Milgram and G. H. Vineyard: Dynamics of radiation damage. Phys. Rev. 120, 1229 (1960).

    Article  Google Scholar 

  84. Gillam, E.: The penetration of positive ions of low energy into alloys and composition changes produced in them by sputtering. J. Phys. Chem. Sol. 11, 55 (1959).

    Article  Google Scholar 

  85. Glockler, G., and S. Lind: The electrochemistry of gases and dielectrics. New York: J. Wiley and Sons, Inc. XIV., 1939.

    Google Scholar 

  86. v. Goeler, E., and E. Lüscher: Adsorption study of gold atoms on molybdenum. Proc. V. Int. Conf. Ion. Phen. Gases, 1961.

    Google Scholar 

  87. Goldman, D. T., D. E. Harrison and R. R. Coveyou: A monte carlo calculation of high-energy sputtering. ORNL-2729 Phys. Math., 1959.

    Google Scholar 

  88. —, and A. Simon: Theory of sputtering by high-speed ions. Phys. Rev. 111, 383 (1958)

    Article  Google Scholar 

  89. Grønlund, F., and W. J. Moore: Sputtering of silver by light ions with energies from 2 to 12 keV. J. Chem. Phys. 32, 1540 (1960).

    Article  Google Scholar 

  90. — — Heavy ions from a radio-frequency proton source. J. Chem. Phys. 31, 1132 (1959).

    Article  Google Scholar 

  91. Grove, W. R.: On the electro-chemical polarity of gases. Trans. Roy. Soc. (London) 142, 87 (1852).

    Article  Google Scholar 

  92. Güntherschulze, A.: Impulsbedingte Kathodenzerstäubung und Elektronenemission. Z. Physik 141, 346 (1955).

    Article  Google Scholar 

  93. — Cathodic sputtering — an analysis of the physical processes. Vac. Sci. and Techn. 3, 360 (1953).

    Google Scholar 

  94. — Neue Untersuchungen über die Kathodenzerstäubung der Glimmentladung. II., III., IV. Z. Physik 119, 79 (1942).

    Google Scholar 

  95. — Kathodenzerstäubung bei sehr geringen Gasdrucken. Z. Physik 62, 607 (1930).

    Article  Google Scholar 

  96. Guseva, M. I.: The sputtering effect of positive ions with energies up to 25 keV in a small electromagnetic separator. Sov. Phys.-Sol. State 1, 1410 (1960).

    Google Scholar 

  97. Haefer, R. A.: Mechanism and properties of a new device to reduce backstreaming of hydrocarbon molecules. Trans. VIII. Vac. Symp. and 2. Intern. Congress, 1346 (1961).

    Google Scholar 

  98. Hagstrum, H. D.: Reflection of noble gas ions at solid surfaces. Phys. Rev. 123, 758 (1961).

    Article  Google Scholar 

  99. — Theory of auger neutralization of ions at the surface of a diamond-type semiconductor. Phys. Rev. 122, 83 (1961).

    Article  Google Scholar 

  100. — Augerelectron ejection from germanium and silicon by noble gas ions. Phys. Rev. 119, 940 (1960).

    Article  Google Scholar 

  101. — Auger ejection of electrons from molybdenum ny noble gas ions. Phys. Rev. 104, 672 (1956).

    Article  Google Scholar 

  102. —, and C. D'Amico: Production and demonstration of atomically clean metal surfaces. J. Appl. Phys. 31, 715 (1960).

    Article  Google Scholar 

  103. Haneman, D.: Comparison of structures of surfaces prepared in high vacuum by cleaning and by ion bombardment and annealing. Phys. Rev. 119, 563 (1960).

    Article  Google Scholar 

  104. Harrison, D. E.: Energy chain effects in the sputtering process. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  105. Harrison, D. E., jr.: Theory of the sputtering process. Phys. Rev. 102, 1473 (1956).

    Article  Google Scholar 

  106. — Determination of the maximum lattice-chain energy from sputtering yield curves. J. Appl. Phys. 32, 924 (1961).

    Article  Google Scholar 

  107. — Extended theory of sputtering. J. Chem. Phys. 32, 1336 (1960).

    Article  Google Scholar 

  108. — Supplementary sputtering calculations. Phys. Rev. 105, 1202 (1957).

    Article  Google Scholar 

  109. —, and G. D. Magnuson: Sputtering thresholds. Phys. Rev. 122, 1421 (1961).

    Article  Google Scholar 

  110. Haymann, P.: Sur l'action de faisceaux d'ions argon sur des surfaces métalliques. J. Chim. Phys. 57, 572 (1960).

    Google Scholar 

  111. —, et C. Waldburger: Attaque sélective de l'argent par des ions argon de faible énergie.

    Google Scholar 

  112. Étude des pseudopériodes. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  113. Heiland, G.: Herstellung und Eigenschaften reiner Halbleiteroberflächen. Fortschr. Physik 9, 393 (1961).

    Article  Google Scholar 

  114. Henschke, E. B.: Threshold energies in mechanical collision theories of cathode sputtering. J. Appl. Phys. 33, 1773 (1962).

    Article  Google Scholar 

  115. — Collision theories of cathode sputtering of methods at low ion energies. Phys. Rev. 121, 5 (1961).

    Article  Google Scholar 

  116. — New collision theory of cathode sputtering of metals at low energies. Phys. Rev. 106, 737 (1957).

    Article  Google Scholar 

  117. — Deposit spot patterns from low-index planes of metal single crystals in a new theory of cathode sputtering. J. Appl. Phys. 28, 411 (1957).

    Article  Google Scholar 

  118. Hines, R. L., and R. Arndt: Radiation effects of bombardment of quartz and vitreous silica by 7.5 keV to 59 keV positive ions. Phys. Rev. 119, 623 (1960).

    Article  Google Scholar 

  119. —, and R. Waller: Sputtering of vitreous silica by 20–60 keV Xe+-ions. J. Appl. Phys. 32, 202 (1961).

    Article  Google Scholar 

  120. von Hippel, A.: Über die Natur und den Ladungszustand der bei Kathodenzerstäubung emittierten Metallteilchen. Ann. Phys. 80, 672 (1926).

    Article  Google Scholar 

  121. Holland, L.: Vacuum deposition of thin films. London: Chapman and Hall Ltd. 1960, Chapt. 14.

    Google Scholar 

  122. Holmes, P. J.: Orientation dependence of etching effects on germanium crystals. Acta Met. 7, 283 (1959).

    Article  Google Scholar 

  123. Holmes, D. K.: The ranges of energetic atoms in solids. “Radiation Damage in Solids”, Int. Atomic Energy Ag. Vienna (1962).

    Google Scholar 

  124. —, and G. Leibfried: Range of radiation induced primary knock-ons in the hard core approximation. J. Appl. Phys. 31, 1046 (1960).

    Article  Google Scholar 

  125. Holmstrom, F. E., and R. D. Knight: Ion bombardment of Ag from 2–50 keV. Abstr. V, 12, Bull. Amer. Phys. Soc. 6, 168 (1961).

    Google Scholar 

  126. Honig, R. E.: The sputtering of silicon carbide by positive ion bombardment. Proc. V. Int. Conf. Ion. Phen. Gases, 1961.

    Google Scholar 

  127. — The application of mass spectrometry to the study of surfaces by sputtering. Adv. Mass. Spectrometry, Perg. Press (1959).

    Google Scholar 

  128. — Sputtering of surfaces by positive ions beams of low energy. J. Appl. Phys. 29, 549 (1958).

    Article  Google Scholar 

  129. Hultgren, R., and K. K. Kelley: Selected values for the thermodynamic properties of metals and alloys. Minerals Res. Lab. Inst. of Eng. Res. Univ. Cal. Berk. 1956.

    Google Scholar 

  130. Huntington, H. B.: Mobility of interstitial atoms in a face-centered metal. Phys. Rev. 91, 1092 (1953).

    Article  Google Scholar 

  131. —, and F. Seitz: Mechanism for self-diffusion in metallic copper. Phys. Rev. 61, 315 (1942).

    Article  Google Scholar 

  132. Izui, K., and F. E. Fujita: Observation of the tracks of fission fragments in molybdenite. J. Phys. Soc. Japon 16, 1779 (1961).

    Article  Google Scholar 

  133. Jopson, R. C., H. Mark and C. D. Swift: Production of characteristic X rays by low-energy protons. Phys. Rev. 127, 1612 (1962).

    Article  Google Scholar 

  134. Jurasova, V. E.: Modern theories of cathode sputtering and the microrelief of the damaged metal surface. Sov. Phys. Techn. Phys. 3, 1806 (1958).

    Google Scholar 

  135. —, u. W. M. Buchanow: Untersuchung der Anisotropie der Kathodenzerstäubung einkristalliner Stoffe in Abhängigkeit von ihrer Temperatur. Kristallographia 7, 2 (1962).

    Google Scholar 

  136. — N. V. Pleshivtsev and I. V. Orfanow: Directed emission of particles from a copper single crystal sputtered by bombardment with ions up to 50 keV Energy. Sov. Phys. JETP 37, 669 (1960).

    Google Scholar 

  137. —, and I. G. Sirotenko: Cathode sputtering of single-crystal balls. Sov. Phys. JETP 14, 968 (1962).

    Google Scholar 

  138. Kaminsky, M.: Sputtering experiments in the Rutherford collision region. Phys. Rev. 126, 1267 (1962).

    Article  Google Scholar 

  139. Kelsch, J. J., O. E. Kammerer, A. N. Goland and P. A. Buhl: Observation of fission fragment damage in thin films of metals. J. Appl. Phys. 33, 1475 (1962).

    Article  Google Scholar 

  140. McKeown, D.: New method for measuring sputtering in the region near threshold. Rev. Sci. Instr. 32, 133 (1961).

    Article  Google Scholar 

  141. Keywell, F.: Measurements and collisions-radiation damage theory of high-vacuum sputtering. Nuc. Sci. Abstr. 9, No. 3898 (1955) and Phys. Rev. 97, 1611 (1955).

    Google Scholar 

  142. Kimmel, H., u. R. Schade: Einige Bemerkungen über die Kathodenzerstäubung. Tag. Deutsche Phys. Ges. 1955.

    Google Scholar 

  143. Kinchin, G. H., and R. S. Pease: The displacement of atoms in solids by radiation. Rep. Progr. Phys. 18, 1 (1955).

    Article  Google Scholar 

  144. Kingdom and I. Langmuir: Rhe removal of thorium from the surface of a thorium tungsten filament by positive ion bombardment. Phys. Rev. 22, 148 (1923).

    Article  Google Scholar 

  145. Kistemaker, J., J. M. Fluit, L. Friedmann, J. v. Eck and S. Snoek: Photons and metastable atoms produced in sputtering experiments (5–20 keV). Proc. V. Int. Conf. Ion. Phen. Gases 1, 131 (1961).

    Google Scholar 

  146. —, and C. Snoek: Surface phenomena related with sputtering. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  147. Kittel, C.: Introduction to solid state physics. New York: John Wiley Inc. 1956.

    Google Scholar 

  148. Koch, W.: Ein hochauflösendes Emissions-Mikroskop zur Sichtbarmachung von Oberflächen mit UV-ausgelösten Elektronen. Z. Physik 152, 1 (1958).

    Article  Google Scholar 

  149. Koedam, M.: Cathode sputtering by rare gas ions of low energy. Bombardment of polycrystalline and monocrystalline material. Thesis, Utrecht 1961.

    Google Scholar 

  150. — Sputtering of a polycristalline silver surface bombarded with monoenergetic argon ions of low energy (40–240 eV). Physica 24, 692 (1958).

    Article  Google Scholar 

  151. — Sputtering of copper single crystals bombarded with monoenergetic ions of low energy (50–350 eV). Physica 25, 742 (1959).

    Article  Google Scholar 

  152. — Sputtering of single crystal metals bombarded with rare gas ions of low energy (50–350 eV). Proc. IV. Int. Conf. Ion. Phen. Gases 1959.

    Google Scholar 

  153. —, and A. Hoogendoorn: Sputtering of copper single crystals bombardment with A+, Kr+ and Ne+ ions with energies ranging from 300–2000 eV. Phsica 26, 351 (1960).

    Article  Google Scholar 

  154. Kopitzki, K., H. Beuscher u. J. Grad: Untersuchung der Kathodenzerstäubung von Metallen für Ionenenergien zwischen 20 und 60 keV. Physikertagung Stuttgart 1962.

    Google Scholar 

  155. —, u. H.-E. Stier: Geschwindigkeit der bei der Kathodenzerstäubung von Metall-Einkristallen ausgesandten Partikel. Physikertagung Stuttgart 1962.

    Google Scholar 

  156. — — Mittlere kinetische Energie der bei der Kathodenzerstäubung von Metallen ausgesandten Partikel. Z. Naturforsch. 17a, 346 (1962).

    Google Scholar 

  157. — — Mittlere Geschwindigkeit der bei der Kathodenzerstäubung von Metallen ausgesandten Partikel. Z. Naturforsch. 16a, 1257 (1961).

    Google Scholar 

  158. Kramer, J.: Der metallische Zustand. Göttingen 1950.

    Google Scholar 

  159. Krohn, V. E. jr.: Emission of negative ions from metal surfaces bombarded by positive cesium ions. J. Appl. Phys. 33, 3523 (1962).

    Article  Google Scholar 

  160. Ladage, A.: Elektroneninterferenzen an elektrolytisch polierten Oberflächen nach Kathodenzerstäubung. Z. Physik 144, 354 (1956).

    Article  Google Scholar 

  161. Laegreid, N., and G. K. Wehner: Sputtering yields of metals for Ar+ and Ne+ Ions with energies from 50 to 600 eV. J. Appl. Phys. 32, 365 (1961).

    Article  Google Scholar 

  162. — — Sputtering of metals and semiconductors by low energy argon ions. 6. Nat. Symp. Vac. Techn. Trans. 1960.

    Google Scholar 

  163. — — Sputtering of metals and semiconductors by Ne+ ions with energies from 50 to 600 eV. 7. Nat. Symp. Vac. Techn. Trans. 1960.

    Google Scholar 

  164. — — and B. Meckel: Sputtering yields of germanium in rare gases. J. Appl. Phys. 30, 374 (1959).

    Article  Google Scholar 

  165. Lane, G. H., and E. Everhart: Ion-atom potential energy functions obtained from keV scattering data. Phys. Rev. 120, 2064 (1960).

    Article  Google Scholar 

  166. Langberg, E.: Analysis of low-energy sputtering. Phys. Rev. 111, 91 (1958).

    Article  Google Scholar 

  167. Large, L. N., and W. S. Withlock: Secondary electron emission from clean metal surface bombarded by fast hydrogen ions. Proc. Phys. Soc. 79, 148 (1962).

    Article  Google Scholar 

  168. Leck, J. H., R. B. Burtt and J. S. Colligon: Sorption and replacement of ionized noble gases at a tungsten surface. J. Appl. Phys. 12, 396 (1961).

    Google Scholar 

  169. Lehmann, C. and G. Leibfried: Long range channeling effects in irradiated crystals (demnächst veröffentlicht).

    Google Scholar 

  170. — — Fokussierende 110-Stoßfolgen in flächenzentrierten Kristallen bei kleinen Winkeln. Z. Physik 162, 203 (1961).

    Article  Google Scholar 

  171. Leibfried, G.: Higher order averages of primary recoil distribution. Z. Physik 171, 1 (1963).

    Article  Google Scholar 

  172. — Calculation of averages for primary recoil distribution. J. Appl. Phys. 33, 1933 (1962).

    Article  Google Scholar 

  173. — Probleme der Strahlungsbeeinflussung fester Stoffe. Hauptvorträge d. Physikertagung Essen 1959.

    Google Scholar 

  174. — Correlated collisions in a displacement spike. J. Appl. Phys. 30, 1388 (1959).

    Article  Google Scholar 

  175. —, and O. S. Oen: A simple approximation for classical scattering at large angles. J. Appl. Phys. 33, 2257 (1962).

    Article  Google Scholar 

  176. Leland, W. T., and R. Olson: The production of ion at metallic surfaces bombarded by energetic atoms. L. A. 2344, Tid-4500, 1960.

    Google Scholar 

  177. Levine, L. P., and H. W. Berry: H1-production by hydrogen positive ion bombardment of a tungsten surface. Phys. Rev. 118, 158 (1960).

    Article  Google Scholar 

  178. Lewis, H. W., and B. E. Simmons: Production of characteristic X-rays by protons of 1,7-to 3-MeV energy. Phys. Rev. 91, 943 (1953).

    Article  Google Scholar 

  179. Lintner, K., u. E. Schmidt: Bedeutung von Korpuskularstrahlen für die Eigenschaften von Festkörpern. Ergebn. exakt. Naturw. 28, 302 (1954/55).

    Article  Google Scholar 

  180. Magnusen, G. D., B. B. Meckell and P. A. Harkins: Etch effects from oblique-incidence ion bombardment. J. Appl. Phys. 32, 369 (1961).

    Article  Google Scholar 

  181. Massay, and E. H. S. Burhop: Electronic and ionic impact phenomena. Oxford: Clarendon Press 1952.

    Google Scholar 

  182. Mayer, H.: Physik dünner Schichten. Stuttgart: Wiss. Verlagsgesellschaft 1950.

    Google Scholar 

  183. W. Schroen and D. Stünkel: A torsion microbalance for operation in ultra-high vacua. Vac. Symp. Trans. 279 (1960).

    Google Scholar 

  184. Medved, D. B., and H. Poppa: Electron microscope diagnostics of thin film sputtering. J. Appl. Phys. 33, 1759 (1962).

    Article  Google Scholar 

  185. Methfessel, S.: Über Kathodenzerstäubung. Glas-u. Hochvak. Techn. 1, 6 (1952), I. Teil; 2, 20 (1952), II. Teil.

    Google Scholar 

  186. Mitropan, I. M., and V. S. Gumeniuk: Relation between secondary emission of negative ions and the angle of entry of primary protons into a metal target. Sov. Phys. JETP 7/I, 162 (1958).

    Google Scholar 

  187. — — Emission of negative ions from metallic surfaces bombarded with positive hydrogen ions. Sov. Phys. JETP 5, 157 (1957).

    Google Scholar 

  188. Möllenstedt, G., and H. Düker: Emission microscopy surface imaging by means of electron released by obliques ion bombardment. Optik 10, 192 (1952).

    Google Scholar 

  189. — Neure emissionsmikroskopische Erfahrungen mit Ionen-, Elektronen-und UV-ausgelösten Elektronen. 4. Int. Kongr. Elektronenmikroskope, Berlin 1958.

    Google Scholar 

  190. —, u. M. Keller: Direkte Sichtbarmachung von Metall-Oberflächen mittels ionenausgelöster Elektronen. Radex-Rundschau Heft 4/5, 153 (1956).

    Google Scholar 

  191. — — Direkte übermikroskopische Sichtbarmachung von Oberflächen mittels ionenausgelöster Elektronen. Proc. Int. Conf. Elec. Micros. 390 (1954).

    Google Scholar 

  192. Molchanov, V. A., and E. S. Mashkova: Angular distribution of fast particles reflected from the surface of a metal as a result of irradiation with an ionic beam. Sov. Phys. Doklady 7, 829 (1963).

    Google Scholar 

  193. —, and V. G. Tel'kovskii: Variation of the cathode sputtering as a function of the angle of incidence of ions on a target. Sov. Phys. Doklady 6, 137 (1961).

    Google Scholar 

  194. — — and V. M. Chicherov: Anisotropy of cathodic sputtering of single crystals. Sov. Phys. Doklady 6, 222 (1961).

    Google Scholar 

  195. — — — Angular distribution of sputtered particles on irradiation of a single crystal by an ion beam. Sov. Phys. Doklady 6, 486 (1961).

    Google Scholar 

  196. Moore, W. J., S. R. Logan, L. C. Luther and S. N. Brown: Some physicochemical effects of ionic bombardment of crystalline targets. Coll. Int. Centre Nat. Rech. Sci., Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  197. Morgulis, N. D., u. Bernardiner: Kathodenzerstäubung (in Russisch). Z. tekhn. Fiz. 5, 1231 (1935).

    Google Scholar 

  198. — and V. D. Tischtschenko: Investigation of cathode sputtering in the near threshold region, I. Sov. Phys. JETP 3, 52 (1956).

    Google Scholar 

  199. — — Über die Schwelle der Kathodenzerstäubung in Metallen. (Orig. russ.) Nachr. Akad. Wiss. SSSR, XX, 10 (1956).

    Google Scholar 

  200. Nelson, R. S., and B. W. Farmery: Focussed collision sequences in tungsten and molybdenum. AERE-R 4192 (1962), and Phil. Mag. 8, 693 (1963).

    Google Scholar 

  201. — Determination of preferred orientation in polycrystalline metal foils using a sputtering technique. Brit. J. Appl. Phys. 11, 475 (1960).

    Article  Google Scholar 

  202. —, and M. W. Thompson: The penetration of energetic ions through the open channels in a crystal lattice. AERE-R 4262 (1963).

    Google Scholar 

  203. — — Evidence for focussed recoil trajectories from a high-energy sputtering experiment with Cu. Phys. Letters 2, 124 (1962).

    Article  Google Scholar 

  204. — — Focused collision sequences in aluminium. Phil. Mag. 7, 1425 (1962).

    Article  Google Scholar 

  205. — — Atomic collision sequences in crystals of copper, silver and gold revealed sputtering in energetic ion beams. Proc. Roy. Soc. 259, 458 (1961).

    Article  Google Scholar 

  206. — — and H. Montgomery: The influence of thermal vibration on focused collision sequences. Phil. Mag. 7, 1385 (1962).

    Article  Google Scholar 

  207. Nilson, K. O.: Electromagnetically enriched isotopes and mass spectroscopy. 68–81. New York: Acad. Press 1956.

    Google Scholar 

  208. Noggle, T. S., and J. O. Stiegler: Fission fragment tracks in metal films. J. Appl. Phys. 33, 1726 (1962).

    Article  Google Scholar 

  209. — — Electron microscope observations of fission fragment tracks in thin films of UO2. J. Appl. Phys. 31, 2199 (1960).

    Article  Google Scholar 

  210. Ogilvie, G. J.: Bombardment of metals by inert gas ions. Austr. J. Phys. 13, 402 (1960).

    Google Scholar 

  211. — The surface structure of silver crystals after argon-ion bombardment. J. Phys. Chem. Sol. 10, 222 (1959).

    Article  Google Scholar 

  212. —, and M. J. Ridge: The cathodic sputtering of silver. J. Phys. Chem. Sol. 10, 217 (1959).

    Article  Google Scholar 

  213. J. V. Sanders and A. A. Thomson: The bombardment of gold films by inert gas ions. J. Phys. Chem. Sol. 24, 247 (1963).

    Article  Google Scholar 

  214. —, and A. A. Thomson: Influence of temperature and bombardment rate on disorientation of silver single crystals by ion bombardment. J. Phys. Chem. Sol. 17, 203 (1961).

    Article  Google Scholar 

  215. Oliphant, M. E. L.: Proc. Roy. Soc. A 127, 373 (1930).

    Article  Google Scholar 

  216. Panin, B. V.: Interaction of medium-energy (10–100 keV) atomic particles with solids (energy spectra of secondary ions). Sov. Phys. JETP 15, 215 (1962).

    Google Scholar 

  217. — Secondary ion emission from metals induced by 10–100 keV ions. Sov. Phys. JETP 14, 1 (1962).

    Google Scholar 

  218. Patterson, H., and D. H. Tomlin: Experiments by radioactive tracer methods on sputtering by rare-gas ions. Proc. Roy. Soc. 265, 474 (1962).

    Article  Google Scholar 

  219. Paul, W., u. G. Wessel: Messung von Dichte und mittlerer Molekulargeschwindigkeit in einem Atomstrahl. Z. Physik 124, 691 (1947/48).

    Article  Google Scholar 

  220. Pease, R. S.: Sputtering of solids by penetrating ions. Nuov. Cim. Suppl. XIII (1960).

    Google Scholar 

  221. Penning, F. M., and J. A. H. Moubis: Cathode sputtering in a magnetic field. Koninkl. Ned. Akad. Wetenschap. Proc. 43, 41 (1940).

    Google Scholar 

  222. Perović, B.: Cathode sputtering of Cu and Pb single crystals by high energy A+ ions. Bull. Inst. Nucl. Sci. „Boris Kidrich“ (Yugosl.) 11, 37 (1961).

    Google Scholar 

  223. — Cathode sputtering of metal single crystals by high energy A+ ions. V. Int. Conf. Ion. Phen. Gases, 1961.

    Google Scholar 

  224. —, and B. Cobić: Cathode sputtering Cu and Ag by A+ ions of energies from 10–200 keV. V. Int. Conf. Ion. Phen. Gases, 1961.

    Google Scholar 

  225. Petrov, N. N.: Secondary emission from metallic surfaces under the action of positive ions. Sov. Phys.-Sol. State 2, 5, 857 (1960); 2, 6, 1182 (1960).

    Google Scholar 

  226. Pines, D.: Collective energy losses in solids. Rev. Mod. Phys. 28, 184 (1956).

    Article  Google Scholar 

  227. Pitkin, E. T.: Sputtering due to high velocity ion bombardment. Progr. in Astronautics and Rocketry 5, 195 (1961).

    Google Scholar 

  228. Pleshivtsev, V. N.: Sputtering of copper by hydrogen ions with energies up to 50 keV. Sov. Phys. JETP 37, 878 (1960).

    Google Scholar 

  229. Plücker: Über die Einwirkung des Magneten auf die elektrischen Entladungen in verdünnten Gasen. Pogg. Ann. 103, 90 (1858).

    Google Scholar 

  230. Poppa, H.: Sputtering experiments inside the electron microscope. Phil. Mag. 7, 1013 (1962).

    Article  Google Scholar 

  231. Powers, D., and W. Whaling: Range of heavy ions in solids. Phys. Rev. 126, 61 (1962).

    Article  Google Scholar 

  232. Price, P. B., and R. M. Walker: Chemical etching of charged-particle tracks in solids. J. Appl. Phys. 33, 3407 (1962).

    Article  Google Scholar 

  233. — — Observations of charged-particle tracks in solids. J. Appl. Phys. 33, 3400 (1962).

    Article  Google Scholar 

  234. Ritchie, R. H., and H. B. Eldridge: Optical emission from irradiated foils. I. Phys. Rev. 126, 1935 (1962).

    Article  Google Scholar 

  235. Robinson, M. T.: Deduction of ion ranges in solids from collection experiments. Appl. Phys. Letters 1, 49 (1962).

    Article  Google Scholar 

  236. — D. K. Holmes and O. S. Oen: Ranges of energetic atoms in solids. I. Random Modell. II. Lattice Modell. Bull. Amer. Phys. Soc. II, 3 (1962); J. Appl. Phys. 34, 302 (1963).

    Google Scholar 

  237. — — — Monte Carlo calculations of the ranges of energetic atoms in solids. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  238. —, and D. S. Oen: The channeling of energetic atoms in crystal lattices. Appl. Phys. Letters 2, 30 (1963).

    Article  Google Scholar 

  239. Rol, P. K.: Verstuiving van koper bij beschieting met ionen van 5–25 keV. Dissertation, Amsterdam 1960.

    Google Scholar 

  240. — J. M. Fluit and J. Kistemaker: Sputtering of copper by ion bombardment in the energy range of 5–25 keV. Physica 26, 1000 (1960).

    Article  Google Scholar 

  241. — — — Letter to the editor: Theoretical aspects of cathode sputtering in the energy range of 5–25 keV. Physica 26, 1009 (1960).

    Article  Google Scholar 

  242. Sputtering experiments with the Amsterdam electromagnetic isotope separator. Symp. Sep. of radioakt. Isot., Wien 1960.

    Google Scholar 

  243. F. P. Viehböck and M. de Jong: Sputtering of copper-monocrystals by bombardment with 20 keV Ar+. IV. Int. Conf. Ion. Phen. Gases, Uppsala 1959.

    Google Scholar 

  244. v. Roos, O.: Theorie der kinetischen Emission von Sekundärelektronen, ausgelöst durch positive Ionen. Z. Physik 147, 210 (1957).

    Article  Google Scholar 

  245. Rosenberg, D., and G. K. Wehner: Sputtering yields for low energy He+-, Kr+-and Xe+-ion bombardment. J. Appl. Phys. 33, 1842 (1962).

    Article  Google Scholar 

  246. Rubin, S.: Surface analysis by charged particle spectroscopy. Nucl. Instr. and Methods 5, 177 (1959).

    Article  Google Scholar 

  247. Sauerbrey, G.: Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Physik 155, 206 (1959).

    Article  Google Scholar 

  248. Schiefer, K.: Dissertation, Würzburg 1955.

    Google Scholar 

  249. Schmitt, R. A., and R. A. Sharp: Measurement of the range of recoil atoms. Phys. Rev. Letters 1, 455 (1958).

    Article  Google Scholar 

  250. Schwarz, H.: Method of measuring and controlling evaporation rates during the production of thin films in vacuum. Vac. Symp. Trans. 326 (1960).

    Google Scholar 

  251. Scott, H. G.: Sputtering of gold by low inert gas ions. J. Appl. Phys. 33, 2011 (1962).

    Article  Google Scholar 

  252. Seeliger, R., u. K. Sommermeyer: Bemerkungen zur Theorie der Kathodenzerstäubung. Z. Physik 93, 692 (1935).

    Article  Google Scholar 

  253. Seitz, F., and J. S. Koehler: Displacement of atoms during irradiation. Phys. Stat. Sol. 2, 307 (1956).

    Google Scholar 

  254. Silk, E. C., and R. S. Barnes: Examination of fission fragment tracks with an electron microscope. Phil. Mag. 4, 970 (1959).

    Article  Google Scholar 

  255. Silsbee, R. H.: Focusing in collision problems in solids. J. Appl. Phys. 28, 1246 (1957).

    Article  Google Scholar 

  256. Sizmann, R.: Wirkung energiereicher Rückstoßatome auf Metalloberflächen. Phys. Verh. 12, 78 (1961).

    Google Scholar 

  257. Slater, J. C.: Introduction to chemical physics. Chap. 27. New York: McGraw-Hill Book Co. 1939.

    Google Scholar 

  258. Snouse, T. W., and M. Bader: The sputtering of copper by N +2 as a function of pressure and temperature. 2nd Int. Vac. Congr. 1961.

    Google Scholar 

  259. Sommermeyer, K.: Das Lilienfeld-Leuchten und die Möglichkeit seiner Deutung durch elektrostatische Plasmaschwingungen an der Metalloberfläche. Z. Naturforsch. 4a, 440 (1949).

    Google Scholar 

  260. — Über den Stoß von Korpuskularstrahlen auf feste Körper. Ann. Phys. 25, 481 (1936).

    Article  Google Scholar 

  261. Sosnovsky, H. M.: The catalytic activity of silver crystals of various orientations after bombardment with positive ions. J. Phys. Chem. Sol. 10, 304 (1959).

    Article  Google Scholar 

  262. Southern, A. L., W. R. Willis and M. T. Robinson: Sputtering experiments with 1-to 5-keV AR+ ions. J. Appl. Phys. 34, 153 (1963).

    Article  Google Scholar 

  263. Stanton, H. E.: On the yield and energy distribution of secondary positive ions from metal surfaces. J. Appl. Phys. 31, 678 (1960).

    Article  Google Scholar 

  264. Stein, R. P.: Low energy sputtering of alkali halide crystals. Proc. V. Int. Conf. Ion. Phen. Gases, München 1961.

    Google Scholar 

  265. —, and F. C. Hurlbut: The angular distribution of sputtered potassium atoms. Phys. Rev. 123, 790 (1961).

    Article  Google Scholar 

  266. — — Studies of sputtering by beam techniques. Techn. Rep. LMSD-288 227 (1960).

    Google Scholar 

  267. Steinmann, W.: Experimenteller Nachweis der Strahlung von Plasmaschwingungen in dünnen Silberschichten. Z. Physik 163, 92 (1961).

    Article  Google Scholar 

  268. Sternglass, E. J.: Theory of secondary electron emission by high-speed ions. Phys. Rev. 108, 1 (1957).

    Article  Google Scholar 

  269. Stewart, A. D. G.: Dissertation, Cambridge 1962.

    Google Scholar 

  270. Stiegler, J. O., and T. S. Noggle: Nitrogen ion bombardment of thin Pt films. J. Appl. Phys. 33, 1894 (1962).

    Article  Google Scholar 

  271. Stuart, R. V., and G. K. Wehner: Sputtering yields at very low bombarding ion energies. J. Appl. Phys. 33, 2345 (1962).

    Article  Google Scholar 

  272. — — Sputtering at very low ion energies. Trans. 7. Nat. Symp. Vac. Techn. 290 (1961).

    Google Scholar 

  273. — — Sputtering thresholds and displacement energies. Phys. Rev. Letters 4, 409 (1960).

    Article  Google Scholar 

  274. Takatsu, K., and T. Toda: Current dependence of sputtering in glow discharge. Proc. V. Int. Conf. Ion. Phen. Gases, München 1961.

    Google Scholar 

  275. Taylor, J. B.: Eine Methode zur direkten Messung der Intensitätsverstärkung in Molekularstrahlen. Z. Physik 57, 242 (1929).

    Article  Google Scholar 

  276. Thommen, K.: Über die Zerstäubung von Kristallen durch Kanalstrahlen. Z. Physik 151, 144 (1958).

    Article  Google Scholar 

  277. Thompson, M. W.: The energy spectrum of sputtered atoms from Au under 43 KeV heavy ion bombardment. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  278. — A theory of high-energy sputtering based on focused collision sequences. Proc. V. Int. Conf. Ion. Phen. Gases, München 1961.

    Google Scholar 

  279. — The ejection of atoms from gold crystals during proton irradiation. Phil. Mag. 4, 139 (1959).

    Article  Google Scholar 

  280. — R. S. Nelson and B. W. Farmery: Evidence for heated spikes in bombarded gold from the energy spectrum of atoms ejected by keV A+ and Xe+ ions. AERE, Harwell 1962.

    Google Scholar 

  281. Townes, C. H.: Theory of cathode sputtering in low voltage gaseous discharge. Phys. Rev. 65, 319 (1944).

    Article  Google Scholar 

  282. Trillat, J. J.: Le bombardement Ionique. Nouvelle méthode d'étude des surfaces. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  283. — Etude des structures superficielles par diffraction électronique et bombardement ionique combinés. Applications. J. Chim. Phys. 53, 570 (1956).

    Google Scholar 

  284. Veksler, V. I.: Interaction of slow positive rubidium and cesium ions with the surface of molybdenum. Sov. Phys. JETP 15, 222 (1962).

    Google Scholar 

  285. — Energy distribution of sputtered and scattered ions in the bombardment of tantalum and molybdenum by positive cesium ions. Sov. Phys. JETP 11, 235 (1960).

    Google Scholar 

  286. Waller, I.: Zur Theorie der Röntgenreflexion. 1. Die Einwirkung der Wärmebewegung der Kristallatome auf Intensität, Lage, Schärfe der Röntgenspektrallinsen. Ann. Phys. 79, 261 (1926); 83, 153 (1927).

    Article  Google Scholar 

  287. Walther, V., u. H. Hintenberger: Untersuchung über die Reflexion von Edelgasionen an Festkörperoberflächen. Z. Naturforsch. 17a, 694 (1962).

    Google Scholar 

  288. — — Über die positive Sekundäremission von Graphit, Kupfer und Gold bei Beschuß mit Edelgasionen mit Energien zwischen 100 und 30 000 eV. Z. Naturforsch. 17a, 1034 (1962).

    Google Scholar 

  289. Waters, P. M.: Kinetic ejection of electrons from tungsten by cesium and lithium ions. Phys. Rev. 111, 1053 (1958).

    Article  Google Scholar 

  290. Wehner, G. K.: Sputtering yield data in the 100–600 eV energy range. Gen. Mills, Rep. Nr. 2309, Juli 1962.

    Google Scholar 

  291. Low energy sputtering studies. Coll. Int. Centre Nat. Rech. Sci., Le Bombardement Ionique, Bellevue (1961).

    Google Scholar 

  292. — Physical sputtering. Proc. V. Int. Conf. Ion. Phen. Gases, München, 2, 1141 (1961).

    Google Scholar 

  293. — Forces on ion-bombarded electrodes in a low-pressure plasma. J. Appl. Phys. 31, 1392 (1960).

    Article  Google Scholar 

  294. — Forces in ion bombarded surfaces. Proc. IV. Int. Conf. Ion. Phen. Gases, Uppsala 1959.

    Google Scholar 

  295. — Influence of the angle of incidence on sputtering yields. Proc. IV. Int. Conf. Ion. Phen. Gases, Uppsala 1959.

    Google Scholar 

  296. — Influence of the angle of incidence on sputtering yields. J. Appl. Phys. 30, 1762 (1959).

    Article  Google Scholar 

  297. — Velocities of sputtered atoms. Phys. Rev. 114, 1203 (1959).

    Article  Google Scholar 

  298. — Etching of germanium crystals by ion bombardment. J. Appl. Phys. 29, 217 (1958).

    Article  Google Scholar 

  299. — Low energy sputtering yields in Hg. Phys. Rev. 112, 1120 (1958).

    Article  Google Scholar 

  300. — Sputtering yields of normally incident Hg+-ion bombardment at low ion energy. Phys. Rev. 108, 35 (1957).

    Article  Google Scholar 

  301. — Controlled sputtering of metals by low-energy Hg-ions. Phys. Rev. 102, 690 (1956).

    Article  Google Scholar 

  302. — Sputtering by ion bombardment. Buch “Adv. in Electronics and Elec. Phys. VII”, p. 239 (1955).

    Google Scholar 

  303. —, and G. Medicus: Sputtering at low ion velocities. J. Appl. Phys. 25, 698 (1954).

    Article  Google Scholar 

  304. —, and D. Rosenberg: Mercury ion beam sputtering of metals at energies 4–15 keV. J. Appl. Phys. 32, 887 (1961).

    Article  Google Scholar 

  305. — — Angular distribution of sputtered material. J. Appl. Phys. 31, 177 (1960).

    Article  Google Scholar 

  306. R. V. Stuart and D. Rosenberg: Annual report on sputtering yields. Gen. Mills, Rep. Nr. 2243, Nov. 1961.

    Google Scholar 

  307. Weijsenfeld, C. H.: Calorimetric measurement of the average energy of sputtered metal-atoms. Phys. Letters 2, 295 (1962).

    Article  Google Scholar 

  308. —, and A. Hoogendoorn: Cathode sputtering by rare gas ions of low energy. Proc. V. Int. Conf. Ion. Phen. Gases, München 1961.

    Google Scholar 

  309. — — and M. Koedam: Sputtering of polycrystalline metals by inert gas ions of low energy (100–1000 eV). Physica 27, 763 (1961).

    Article  Google Scholar 

  310. Weiss, A., L. Heldt and J. W. Moore: Sputtering of silver by neutral beams of hydrogen and helium. J. Chem. Phys. 29, 7 (1958).

    Article  Google Scholar 

  311. Wessel, G., and H. Lew: Hyperfine structures of silver and gold by the atomic resonance method. Phys. Rev. 93, 641 (1953).

    Article  Google Scholar 

  312. Weyl, R.: Zur zerstörungsfreien Messung von Zusammensetzung und Schichtdicke kleiner Bereiche in dünnen Schichten mit Hilfe der Röntgenfluoreszenz. Z. angew. Phys. 13, 283 (1961).

    Google Scholar 

  313. Whapham, A. D., and M. J. Makin: The nature of fission fragment tracks in uranium dioxyde. Phil. Mag. 7, 1441 (1962).

    Article  Google Scholar 

  314. Wolsky, S. P.: Positive ion bombardment of germanium and silicon. Phys. Rev. 108, 1131 (1957).

    Article  Google Scholar 

  315. —, and E. J. Zdanuk: Investigation of the sputtering of silicon. J. Appl. Phys. 32, 782 (1961).

    Article  Google Scholar 

  316. — — Sputtering of silicon with A+2 ions. Phys. Rev. 121, 374 (1961).

    Article  Google Scholar 

  317. — — The sputtering of solid surfaces with positive ions. Trans. Vac. Symp. 282 (1960).

    Google Scholar 

  318. — — The ion bombardment, oxydation and regeneration of germanium surfaces. J. Phys. Chem. Sol. 14, 129 (1960).

    Article  Google Scholar 

  319. Yonts, O. C.: Sputtering effect of some energetic ions on various metals. ORNL, 1959 and TID-7558, Washington 1958.

    Google Scholar 

  320. —, and D. E. Harrison: Surface cleaning by cathode sputtering. J. Appl. Phys. 31, 1583 (1960).

    Article  Google Scholar 

  321. — C. E. Normand and D. E. Harrison: High-energy sputtering. J. Appl. Phys. 31, 447 (1960).

    Article  Google Scholar 

  322. —, and R. A. Strehlow: Effect of bombardment of titanium by energetic deuterium ions. J. Appl. Phys. 33, 2903 (1962).

    Article  Google Scholar 

  323. Young, F. W.: Etch pits at dislocations in copper. J. Appl. Phys. 32, 192 (1961).

    Article  Google Scholar 

  324. Young, J. R.: Penetration of electrons and ions in aluminium. J. Appl. Phys. 27, 1 (1956)

    Article  Google Scholar 

  325. Zemel, J.: Surface ionization phenomena on polycrystalline tungsten. J. Chem. Phys. 28, 410 (1958).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1964 Springer-Verlag

About this paper

Cite this paper

Behrisch, R. (1964). Festkörperzerstäubung durch Ionenbeschuß. In: Ergebnisse der exakten naturwissenschaften. Ergebnisse der Exakten Naturwissenschaften, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0111996

Download citation

  • DOI: https://doi.org/10.1007/BFb0111996

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-03121-5

  • Online ISBN: 978-3-540-37079-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics