Skip to main content

Experiments on a high performance hydraulic manipulator joint: Modelling for control

  • Chapter 11 Actuation Control
  • Conference paper
  • First Online:
Experimental Robotics V

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 232))

Abstract

Modelling and experimental identification of a hydraulic servoactuator system is presented. The development of the model is important for further understanding the system and for developing a robust force controller. System parameters are identified using the elbow joint of the SARCOS slave experimental hydraulic manipulator. Experimental work is central to achieving the modelling objectives. Physical parameters are identified using specially designed experiments and apparatus which isolate various subsystems of the joint. Several modelling assumptions are justified by experimental observations. The model is validated by comparing simulation and experimental results. Correlation between model and actual system response proved to be very good. Hence, the developed model predicts well system dynamics behavior and will prove useful in the development of a robust force controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boulet B, Daneshmend L, Hayward V, Nemri C 1992 System Identification and Modelling of a High Performance Hydraulic Actuator. In: Chatila R, Hirzinger G (eds) 1992 Exp Robotics II-The Second Int Symp. Springer-Verlag, New York.

    Google Scholar 

  2. McLain T W, Iversen E K, Davis C C, Jacobsen S C 1989 Development, Simulation, and Validation of a Highly Nonlinear Hydraulic Servosystem Model. Proc of the 1989 Am Control Conf. Pittsburgh PA, pp 385–391.

    Google Scholar 

  3. Heintze J, Schothorst G v, v d Weiden A J J, Teerhuis P C 1993 Modeling and Control of an Industrial Hydraulic Rotary Vane Actuator. Proc of the 32nd Conf on Decis and Control. San Antonio TX, pp 1913–1918.

    Google Scholar 

  4. Kwon D S, Babcock S M, Burks B L, Kress R L 1995 Tracking Control of the Hydraulically Actuated Flexible Manipulator. Proc of the 1995 Int Conf on Robotics and Autom, ICRA'95. Nagoya Japan, pp 2200–2205.

    Google Scholar 

  5. Love L, Kress R, Jansen J 1997 Modeling and Control of a Hydraulically Actuated Flexible-Prismatic Link Robot. Proc of the 1997 IEEE Conf on Robotics and Autom, ICRA'97. Albuquerque NM, pp 669–675.

    Google Scholar 

  6. Bluethmann B, Ananthakrishnan S, Scheerer J, Faddis T N, Greenway R B 1995 Experiments in Dexterous Hybrid Force and Position Control of a Master/Slave Electrohydraulic Manipulator. Proc of the 1995 Int Conf on Intell Robots and Syst, IROS'95. Pittsburgh PA, pp 27–32.

    Google Scholar 

  7. Dunnigan M W, Lane D M, Clegg A C, Edwards I 1996 Hybrid position/force control of a hydraulic underwater manipulator. IEE Proc Control Theory & Appl. 143:145–151.

    Article  MATH  Google Scholar 

  8. Unruh S, Farris T, Greenway B, Hibbard W 1994 A Hybrid Position/Force and Positional Accuracy Controller for a Hydraulic Manipulator. SPIE Telemanipulator and Telepresence Technol. 2351:207–213.

    Google Scholar 

  9. Laval L, M'sirdi N K, Cadiou J-C 1996 Hth-Force Control of a Hydraulic Servo-Actuator with Environmental Uncertainties. Proc of the 1996 IEEE Int Conf on Robotics and Autom, ICRA'96. Minneapolis, MN, pp 1566–1571.

    Google Scholar 

  10. Heinrichs B, Sepehri N, Thornton-Trump, A B 1996 Position-Based Impedance Control of an Industrial Hydraulic Manipulator. Proc of the 1996 IEEE Int Conf on Robotics and Autom, ICRA'96. Minneapolis, MN, pp 284–290.

    Google Scholar 

  11. Bilodeau G, Papadopoulos E 1997 Development of a Hydraulic Manipulator Servoactuator Model: Simulation and Experimental Validation Proc of the 1997 IEEE Int Conf on Robotics and Autom, ICRA'97. Albuquerque, NM, pp 1547–1552.

    Google Scholar 

  12. Henri P D, Hollerbach J M 1994 An Analytical and Experimental Investigation of a Jet-Pipe Controlled Electropneumatic Actuator. Proc of the 1994 IEEE Int Conf on Robotics and Autom, ICRA'94. San Diego, CA, pp 300–306.

    Google Scholar 

  13. Carpenter K H 1991 A Differential Equation Approach to Minor Loops in the Jiles-Atherton Hysteresis Model. IEEE Trans on Magnetics. 27:4404–4406.

    Article  Google Scholar 

  14. Blackburn J F, Reethof G, Shearer J L (eds) 1960 Fluid Power Control. MIT Press, Cambridge.

    Google Scholar 

  15. Merritt H E 1967 Hydraulic Control Systems. John Wiley and Sons Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alicia Casals Anibal T. de Almeida

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag London Limited

About this paper

Cite this paper

Bilodeau, G., Papadopoulos, E. (1998). Experiments on a high performance hydraulic manipulator joint: Modelling for control. In: Casals, A., de Almeida, A.T. (eds) Experimental Robotics V. Lecture Notes in Control and Information Sciences, vol 232. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0112990

Download citation

  • DOI: https://doi.org/10.1007/BFb0112990

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76218-8

  • Online ISBN: 978-3-540-40920-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics