Skip to main content

Phospholipase D—Structure, regulation and function

  • Chapter
  • First Online:
Reviews of Physiology, Biochemistry and Pharmacology

Part of the book series: Reviews of Physiology, Biochemistry and Pharmacology ((REVIEWS,volume 144))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abousalham A, Liossis C, O'Brien L, Brindley DN (1997) Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA J Biol Chem 272:1069–1075

    PubMed  CAS  Google Scholar 

  • Agwu DE, McPhail LC, Chabot MC, Daniel LW, Wykle RL, McCall CE (1989) Choline-linked phosphoglycerides. A source of phosphatidic acid and diglycerides in stimulated neutrophils. J Biol Chem 264:1405–1413

    PubMed  CAS  Google Scholar 

  • Agwu DE, McPhail LC, Sozzani S, Bass DA, McCall CE (1991) Phosphatidic acid as a second messenger in human polymorphonuclear leukocytes. J Clin Invest 88:531–539

    PubMed  CAS  Google Scholar 

  • Ahmed S, Lee J, Kozma R, Best A, Monfries C, Lim L (1993) A novel functional target for tumor-promoting phorbol esters and lysophosphatidic acid. The p21rac-GTPase activating protein n-chimaerin. J Biol Chem 268:10709–10712

    PubMed  CAS  Google Scholar 

  • Aktories K, Braun U, Rosener S, Just I, Hall A (1989) The rho gene product expressed in E.coli is a substrate of botulinum ADP-ribosyltransferase C3. Biochem Biophys Res Commun 158:209–213

    PubMed  CAS  Google Scholar 

  • Al-Awar O, Radhakrishna H, Powell NN, Donaldson JG (2000) Separation of membrane trafficking and actin remodeling functions of ARF6 with an effector domain mutant. Molec Cell Biol 20:5998–6007

    PubMed  CAS  Google Scholar 

  • Andresen BT, Jackson EK, Romero GG (2001) Angiotensin II signaling to phospholipase D in renal microvascular smooth muscle cells in SHR. Hypertension 37:635–639

    PubMed  CAS  Google Scholar 

  • Arneson LS, Kunz J, Anderson RA, Traub LM (1999) Coupled inositide phosphorylation and phospholipase D activation initiates clathrin-coat assembly on lysosomes. J Biol Chem 274:17794–17805

    PubMed  CAS  Google Scholar 

  • Augert G, Bocckino SB, Blackmore PF, Exton JH (1989) Hormonal stimulation of diacylglycerol formation in hepatocytes. Evidence for phosphatidylcholine breakdown. J Biol Chem 264:21689–21698

    PubMed  CAS  Google Scholar 

  • Bae CD, Min DS, Fleming IN, Exton JH (1998) Determination of interaction sites on the small G protein RhoA for phospholipase D. J Biol Chem 273:11596–11604

    PubMed  CAS  Google Scholar 

  • Balboa MA, Firestein BL, Godson C, Bekk KS, Insel PA (1994) Protein kinase Cα mediates phospholipase D activation by nucleotides and phorbol ester in Madin-Darby canine kidney cells. Stimulation of phospholipase D is independent of activation of polyphosphoinositide-specific phospholipase C and phospholipase A2. J Biol Chem 269:10511–10516

    PubMed  CAS  Google Scholar 

  • Baldassare JJ, Henderson PA, Burns D, Loomis C, Fisher GJ (1992) Translocation of protein kinase C isozymes in thrombin-stimulated human platelets. Correlation with 1,2-diacylglycerol levels. J Biol Chem 267:15585–15590

    PubMed  CAS  Google Scholar 

  • Bandoh K, Aoki J, Taira A, Tsujimoto M, Arai H, Inoue K (2000) Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. FEBS Lett 478:159–165

    PubMed  CAS  Google Scholar 

  • Banno Y, Tamiya-Koizumi K, Oshima H, Morikawa A, Yoshida S, Nozawa Y (1997) Nuclear ADP-ribosylation factor (ARF)-and oleate-dependent phospholipase D (PLD) in rat liver cells. Increases of ARF-dependent PLD activity in regenerating liver cells. J Biol Chem 272:5208–5213

    PubMed  CAS  Google Scholar 

  • Banschbach MW, Geison RL, Hokin-Neaverson M (1981) Effects of cholinergic stimulation of levels and fatty acid composition of diacylglycerols in mouse pancreas. Biochim Biophys Acta 663:34–45

    PubMed  CAS  Google Scholar 

  • Bass DA, McPhail LC, Schmitt JD, Morris-Natschke S, McCall CE, Wykle RL (1989) Selective priming of rate and duration of the respiratory burst of neutrophils by 1,2-diacyl and 1-O-alkyl-2-acyl diglycerides. Possible relation to effects on protein kinase C. J Biol Chem 264:19610–19617

    Google Scholar 

  • Bauldry SA, Bass DA, Cousart SL, McCall CE (1991) Tumor necrosis factor α priming of phospholipase D in human neutrophils. Correlation between phosphatidic acid production and superoxide generation. J Biol Chem 266:4173–4179

    PubMed  CAS  Google Scholar 

  • Bauldry SA, Elsey KL, Bass DA (1992) Activation of NADPH oxidase and phospholipase D in permeabilized human neutrophils. Correlation between oxidase activation and phosphatidic acid production. J Biol Chem 267:25141–25152

    PubMed  CAS  Google Scholar 

  • Bellavite P, Corso F, Dusi S, Grzeskowiak M, Della-Bianca V, Rossi F (1988) Activation of NADPH-depdendent superoxide production in plasma membrane extracts of pig neutrophils by phosphatidic acid. J Biol Chem 263:8210–8214

    PubMed  CAS  Google Scholar 

  • Benistant C, Rubin R (1990) Ethanol inhibits thrombin-induced secretion by human platelets at a site distinct from phospholipase C or protein kinase C. Biochem J 269:489–497

    PubMed  CAS  Google Scholar 

  • Bi K, Roth MG, Ktistakis NT (1997) Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr Biol 7:301–307

    PubMed  CAS  Google Scholar 

  • Billah MM, Pai J-K, Mullmann TJ, Egan RW, Siegel MI (1989) Regulation of phospholipase D in HL-60 granulocytes. Activation by phorbol esters, diglyceride, and calcium ionophore via protein kinase C-independent mechanisms. J Biol Chem 264:9069–9076

    PubMed  CAS  Google Scholar 

  • Bocckino SB, Blackmore PF, Exton JH (1985) Stimulation of 1,2-diacylglycerol accumulation in hepatocytes by vasopressin, epinephrine, and angiotensin II. J Biol Chem 260:14201–14207

    PubMed  CAS  Google Scholar 

  • Bocckino SB, Blackmore PF, Wilson PB, Exton JH (1987) Phosphatidate accumulation in hormone-treated hepatocytes via a phospholipase D mechanism. J Biol Chem 262:15309–15315

    PubMed  CAS  Google Scholar 

  • Bocckino SB, Wilson PB, Exton JH (1987) Ca2+-mobilizing hormones elicit phosphatidylethanol accumulation via phospholipase D activation. FEBS Lett 225:201–204

    PubMed  CAS  Google Scholar 

  • Bocckino SB, Wilson PB, Exton JH (1991) Phosphatidate-dependent protein phosphorylation. Proc Natl Acad Sci USA 88:6210–6213

    PubMed  CAS  Google Scholar 

  • Boisgard R, Chanat E (2000) Phospholipase D-dependent and-independent mechanisms are involved in milk protein secretion in rabbit mammary epithelial cells. Biochim Biophys Acta 1495:281–296

    PubMed  CAS  Google Scholar 

  • Bokoch GM, Bohl BP, Chuang T-H (1994) Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J Biol Chem 269:31674–31679

    PubMed  CAS  Google Scholar 

  • Bonser RW, Thompson NT, Randall RW, Garland LG (1989) Phospholipase D is functionally linked to superoxide generation in the human neutrophil. Biochem J 264:617–620

    PubMed  CAS  Google Scholar 

  • Bourgoin S, Grinstein S (1992) Peroxides of vanadate induce activation of phospholipase D in HL-60 cells. Role of tyrosine phosphorylation. J Biol Chem 267:11908–11916

    PubMed  CAS  Google Scholar 

  • Bourgoin S, Harbour D, Desmarais Y, Takai Y, Beaulieu A (1995) Low molecular weight GTP-binding proteins in HL-60 granulocytes. Assessment of the role of ARF and of a 50-kDa cytosolic protein in phospholipase D activation. J Biol Chem 270:3172–3178

    PubMed  CAS  Google Scholar 

  • Brinson AE, Harding T, Diliberto PA, He Y, Li X, Hunter D, Herman B, Earp HS, Graves LM (1998) Regulation of a calcium-dependent tyrosine kinase in vascular smooth muscle cells by angiotensin II and platelet-derived growth factor. Dependence on calcium and the actin cytoskeleton. J Biol Chem 273:1711–1718

    PubMed  CAS  Google Scholar 

  • Brisco CP, Martin A, Cross M, Wakelam MJO (1995) The roles of multiple pathways in regulating bombesin-stimulated phospholipase D activity in Swiss 3T3 fibroblasts. Biochem J 306:115–122

    Google Scholar 

  • Brown FD, Thomas N, Saqib KM, Clark JM, Powner D, Thompson NT, Solari R, Wakelam MJO (1998) Phospholipase D1 localises to secretory granules and lysosomes and is plasma-membrane translocated on cellular stimulation. Curr Biol 8:835–838

    PubMed  CAS  Google Scholar 

  • Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC (1993) ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75:1137–1144

    PubMed  CAS  Google Scholar 

  • Brown HA, Gutowski S, Kahn RA Kahn RA, Sternweis PC (1995) Partial purification and characterization of Arf-sensitive phospholipase D from procine brain. J Biol Chem 270:14935–14943

    PubMed  CAS  Google Scholar 

  • Buhl AM, Johnson NL, Dhanasekaran N, Johnson GL (1995) Gα12 and Gα13 stimulate Rho-dependent stress fiber formation and focal adhesion assembly. J Biol Chem 270:14935–14943

    Google Scholar 

  • Burnham DN, Uhlinger DJ, Lambeth JD (1990) Diradylglycerol synergizes with an anionic amphiphile to activate superoxide generation and phosphorylation of p47phox in a cell-free system from human neutrophils. J Biol Chem 265:17550–17559

    PubMed  CAS  Google Scholar 

  • Cabot MC, Jaken S (1984) Structural and chemical specificity of diradylglycerols for protein kinase C activation. Biochem Biophys Res Commun 125:163–169

    PubMed  CAS  Google Scholar 

  • Cai S, Exton JH (2001) Determination of interaction sites of phospholipase D1 for RhoA. Biochem J 355:779–785

    PubMed  CAS  Google Scholar 

  • Carnero A, Cuadrado A, del Peso L, Lacal JC (1994) Activation of type D phospholipase by serum stimulation and ras-induced transformation in NIH3T3 cell. Oncogene 9:1387–1395

    PubMed  CAS  Google Scholar 

  • Carnero A, Dolfi F, Lacal JC (1994) ras-p21 activates phospholipase D and A2, but not phospholipase C or PKC, in Xenopus laevis oocytes. J Cell Biochem 54:478–486

    PubMed  CAS  Google Scholar 

  • Caumont A-S, Galas M-C, Vitale N, Aunis D, Bader M-F (1998) Regulated exocytosis in chromaffin cells. Translocation of ARF6 stimulates a plasma membrane-associated phospholipase D. J Biol Chem 273:1373–1379

    PubMed  CAS  Google Scholar 

  • Caumont A-S, Vitale N, Gensse M, Galas M-C, Casanova JE, Bader M-F (2000) Identification of a plasma membrane-associated guanine nucleotide exchange factor for ARF6 in chromaffin cells. Possible role in the regulated exocytotic pathway. J Biol Chem 275:15637–15644

    PubMed  CAS  Google Scholar 

  • Cavenagh MM, Whitney JA, Carroll K, Zhang C-j, Bowman AL, Rosenwald AG, Mellman I, Kahn RA (1996) Intracellular distribution of Arf proteins in mammalian cells. Arf6 is uniquely localized to the plasma membrane. J Biol Chem 271:21767–21774

    PubMed  CAS  Google Scholar 

  • Chao W, Liu H, Hanahan DJ, Olson MS (1992) Platelet-activating factor-stimulated protein tyrosine phosphorylation and eicosanoid synthesis in rat kupffer cells. Evidence for calcium-dependent and protein kinase C-dependent and-independent pathways. J Biol Chem 267:6725–6735

    PubMed  CAS  Google Scholar 

  • Chen Y-G, Siddhanta A, Austin CD, Hammond SM, Sung T-C, Frohman MA, Morris AJ, Shields D (1997) Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network. J Cell Biol 138:495–504

    PubMed  CAS  Google Scholar 

  • Ching T-T, Wang D-S, Hsu A-L, Lu P-J, Chen C-S (1999) Identification of multiple-specific phospholipases D as new regulatory enzymes for phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 274:8611–88617

    PubMed  CAS  Google Scholar 

  • Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA (1994) The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79:507–513

    PubMed  CAS  Google Scholar 

  • Chuang T-H, Bohl BB, Bokoch GM (1993) Biologically active lipids are regulators of Rac GDI complexation. J Biol Chem 268:26206–26211

    PubMed  CAS  Google Scholar 

  • Chung J-K, Sekiya F, Fang H-S, Lee C, Han J-S, Kim SR, Bae YS, Morris AJ, Rhee SG (1997) Synaptojanin inhibition of phospholipase D activity by hydrolysis of phosphatidylinositol 4,5-bisphosphate. J Biol Chem 272:15980–15985

    PubMed  CAS  Google Scholar 

  • Cockcroft, S, Allan D (1984) The fatty acid composition of phosphatidylinositol, phosphatidate and 1,2-diacylglycerol in stimulated human neutrophils. Biochem J 222:557–559

    PubMed  CAS  Google Scholar 

  • Cockcroft S, Thomas GMH, Fensome A, Geny B, Cunningham E, Gout I, Hiles I, Totty NF, Truong O, Hsuan JJ (1994) Phospholipase D: A downstream effector of ARF in granulocytes. Science 263:523–526

    PubMed  CAS  Google Scholar 

  • Colley WC, Sung T-C, Roll R, Jenco J, Hammond SM, Altshuller Y, Bar-Sagi D, Morris AJ, Frohman MA (1997) Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr Biol 7:191–201

    PubMed  CAS  Google Scholar 

  • Conricode KM, Brewer KA, Exton JH (1992) Activation of phospholipase D by protein kinase C. Evidence for a phosphorylation-independent mechanism. J Biol Chem 267:7199–7202

    PubMed  CAS  Google Scholar 

  • Conricode KM, Smith JL, Burns DJ, Exton JH (1994) Phospholipase D activation in fibroblast membranes by the ( and ( isoforms of protein kinase C. FEBS Lett. 342:149–153

    PubMed  CAS  Google Scholar 

  • Contos JJA, Ishii I, Chun J (2000) Lysophosphatidic acid receptors. Molec Pharmacol 58:1188–1196

    CAS  Google Scholar 

  • Cross MJ, Roberts S, Ridley AJ, Hodgkin MN, Stewart A, Claesson-Welsh L, Wakelam MJO (1986) Stimulation of actin stress fibre formation mediated by activation of phospholipase D. Curr Biol 6:588–597

    Google Scholar 

  • Czarny M, Lavie Y, Fiucci G, Liscovitch M (1999) Localization of phospholipase D in detergent-insoluble, caveolin-rich membrane domains. Modulation by caveolin-1 expression and caveolin-1182-101. J Biol Chem 274:2717–2724

    PubMed  CAS  Google Scholar 

  • Czarny M, Fiucci G, Lavie Y, Banno Y, Nozawa Y, Liscovitch M (2000) Phospholipase D2: Functional interaction with caveolin in low density membrane microdomains. FEBS Letts 467:326–332

    CAS  Google Scholar 

  • Daniel LW, Small GW, Schmitt JD (1988) Alkyl-linked diglycerides inhibit protein kinase C activation by diacylglycerols. Biochem Biophys Res Commun 151:291–297

    PubMed  CAS  Google Scholar 

  • Dennis EA (1994) Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 269:13057–13061

    PubMed  CAS  Google Scholar 

  • Divecha N, Lander DJ, Scott TW, Irvine RF (1991) Molecular species analysis of 1,2-diacylglycerols and phosphatidic acid formed during bombesin stimulation of Swiss 3T3 cells. Biochim Biophys Acta 1093:184–188

    PubMed  CAS  Google Scholar 

  • Divecha N, Roefs M, Halstead JR, D'Andrea S, Fernandez-Borga M, Oomen L, Saqib KM, Wakelam MJO, D'Santos C (2000) Interaction of the type I( PIP kinase with phospholipase D: a role for the local generation of phosphatidylinositol 4,5-bisphosphate in the regulation of PLD2 activity. EMBO J 19:5440–5449

    PubMed  CAS  Google Scholar 

  • Donaldson JG, Lippincott-Schwartz J (2000) Sorting and signaling at the Golgi complex. Cell 101:693–696

    PubMed  CAS  Google Scholar 

  • Dougherty RW, Dubay GR, Niedel JE (1989) Dynamics of the diradylglycerol responses of stimulated phagocytes. J Biol Chem 264:11263–11269

    PubMed  CAS  Google Scholar 

  • Du G, Altshuller YM, Kim Y, Han JM, Ryu SH, Morris AJ, Frohman MA, Wakelam MJO, D'Santos C (2000a) Interaction of the type I( PIP kinase with phospholipase D: a role for the local generation of phosphatidylinositol 4,5-bisphosphate in the regulation of PLD2 activity. EMBO J 19:5440–5449

    Google Scholar 

  • Du G, Altshuller YM, Kim Y, Han JM, Ryu SH, Morris AJ, Frohman MA (2000b) Dual requirement for Rho and protein kinase C in direct activation of phospholipase D1 through G protein-coupled receptor signaling. Molec Biol Cell 11:4359–4368

    PubMed  CAS  Google Scholar 

  • Dubyak GR, Schomisch SJ, Kusner DJ, Xie M (1993) Phospholipase D activity in phagocytic leucocytes is synergistically regulated by G-protein-and tyrosine kinase-based mechanisms. Biochem J 292:121–128

    PubMed  CAS  Google Scholar 

  • Eichholtz T, Jalink K, Fahrenfort I, Moolenaar WH (1993) The bioactive phospholipid lysophosphatidic acid is released from activated platelets. Biochem J 291:677–680

    PubMed  CAS  Google Scholar 

  • El Bawab S, Macovschi O, Sette C, Conti M, Lagarde M, Nemoz G, Prigent A-F (1997) Selective stimulation of a cAMP-specific phosphodiesterase (PDE4A5) isoform by phosphatidic acid molecular species endogenously formed in rat thymocytes. Eur J Biochem 247:1151–1157

    PubMed  CAS  Google Scholar 

  • Eldar H, Ben-AV P, Schmidt U-S, Livneh E, Liscovitch M (1993) Upregulation of phospholipase D activity induced by overexpression of protein kinase C-α. Studies in intact Swiss/3T3 cells and in detergent-solubilized membranes in vitro. J. Biol. Chem. 268:12560–12564

    PubMed  CAS  Google Scholar 

  • El Hadj NB, Popoff MR, Marvaud J-C, Payrastre B, Boquet P, Geny B (1999) G-protein-stimulated phospholipase D activity is inhibited by lethal toxin from Clostridium sordellii in HL-60 cells. J Biol Chem 274:14021–14031

    PubMed  CAS  Google Scholar 

  • Emoto M, Klarlund JK, Waters SB, Hu V, Buxton JM, Chawla A, Czech MP (2000) A role for phospholipase D in GLUT4 glucose transporter translocation. J Biol Chem 275:7144–7151

    PubMed  CAS  Google Scholar 

  • Epand RM, Stafford AR (1990) Counter-regulatory effects of phosphatidic acid on protein kinase C activity in the presence of calcium and diolein. Biochem Biophys Res Commun 171:487–490

    PubMed  CAS  Google Scholar 

  • Erickson RW, Langel-Peveri P, Traynor-Kaplan AE, Heyworth PG, Curnutte JT (1999) Activation of human neutrophil NADPH oxidase by phosphatidic acid or diacylglycerol in a cell-free system. Activity of diacylglycerol is dependent on its conversion to phosphatidic acid. J Biol Chem 274:22243–22250

    PubMed  CAS  Google Scholar 

  • Exton JH (1990) Signaling through phosphatidylcholine breakdown. J Biol Chem 265:1–4

    PubMed  CAS  Google Scholar 

  • Exton JH (1996) Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu. Rev. Pharmacol. Toxicol. 36:481–509

    PubMed  CAS  Google Scholar 

  • Exton JH (1997) Phospholipase D: Enzymology, mechanisms of regulation, and function. Physiol Rev 77:303–320

    PubMed  CAS  Google Scholar 

  • Exton JH (1998) Phospholipase D. Biochim Biophys Acta 1436:105–115

    PubMed  CAS  Google Scholar 

  • Exton JH (1999) Regulation of phospholipase D. Biochim Biophys Acta 1439:121–133

    PubMed  CAS  Google Scholar 

  • Fällman M, Gullberg M, Hellberg C, Andersson T (1992) Complement receptor-mediated phagocytosis is associated with accumulation of phosphatidylcholine-derived digylceride in human neutrophils. Involvement of phospholipase D and direct evidence for a positive feedback signal of protein kinase C. J Biol Chem 267:2656–2663

    PubMed  Google Scholar 

  • Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J (2001) Phosphatidic acid mediated mitogenic activation of mTOR signaling. Science In press.

    Google Scholar 

  • Fensome A, Cunningham E, Prosser S, Tan SK, Swigart P, Thomas G, Hsuan J, Cockcroft S (1996) ARF and PITP restore GTP(S-stimulated protein secretion from cytosol-depleted HL60 cells by promoting PIP2 synthesis. Curr Biol 6:730–738

    PubMed  CAS  Google Scholar 

  • Fensome A, Whatmore J, Morgan C, Jones D, Cockcroft S (1998) ADP-ribosylation factor and Rho proteins mediate fMLP-dependent activation of phospholipase D in human neutrophils. J Biol Chem 273:13157–13164

    PubMed  CAS  Google Scholar 

  • Fleming I, Elliott CM, Exton JH (1996) Differential translocation of Rho family GTPases by lysophosphatidic acid, endothelin-1, and platelet-derived growth factor. J Biol Chem 271:33067–33073

    PubMed  CAS  Google Scholar 

  • Frank C, Keilhack H, Opitz F, Zschörnig O, Böhmer F-D (1999) Binding of phosphatidic acid to the protein-tyrosine phosphatase SHP-1 as a basis for activity modulation. Biochem 38:11993–12002

    CAS  Google Scholar 

  • Frankel P, Ramos M, Flom J, Bychenok S, Joseph T, Kerkhoff E, Rapp UR, Feig LA, Foster DA (1999) Ral and Rho-dependent activation of phospholipase D in v-Raf-transformed cells. Biochem Biophys Res Commun 255:502–507

    PubMed  CAS  Google Scholar 

  • Freeman EJ (2000) The Ang II-induced growth of vascular smooth muscle cells involves a phospholipase D-mediated signaling mechanism. Arch Biochem Biophys 374:363–370

    PubMed  CAS  Google Scholar 

  • Freyberg Z, Sweeney D, Siddhanta A, Bourgoin S, Frohman M, Shields D (2001) Intracellular localization of phospholipase D1 in mammalian cells. Mol Biol Cell 12:943–955

    PubMed  CAS  Google Scholar 

  • Frohman M, Sung T-C, Morris AJ (1999) Mammalian phospholipase D structure and regulation. Biochim Biophys Acta 1439:175–186

    PubMed  CAS  Google Scholar 

  • Fromm C, Coso OA, Montaner S, Xu N, Gutkind JS (1997) The small GTP-binding protein Rho links G protein-coupled receptors and Gα12 to the serum response element and to cellular transformation. Proc Natl Acad Sci USA 94:10098–10103

    PubMed  CAS  Google Scholar 

  • Fukami K, Takenawa T (1992) Phosphatidic acid that accumulates in plateletderived growth factor-stimulated Balb/c 3T3 cells is a potential mitogenic signal. J Biol Chem 267:10988–10993

    PubMed  CAS  Google Scholar 

  • Ganley IG, Walker, SJ, Manifava M, Li D, Brown A, Ktistakis NT (2001) Interaction of phospholipase D1 with a casein-kinase-2-like serine kinase. Biochem J 354:369–378

    PubMed  CAS  Google Scholar 

  • Ganong BR, Loomis CR, Hannun YA, Bell RM (1986) Specificity and mechanism of protein kinase C activation by sn-1,2-diacylglycerols. Proc Natl Acad Sci USA 83:1184–1188

    PubMed  CAS  Google Scholar 

  • Gaschet J, Hsu VW (1999) Distribution of ARF6 between membrane and cytosol is regulated by its GTPase cycle. J Biol Chem 274:20040–20045

    PubMed  CAS  Google Scholar 

  • Ghosh S, Strum JC, Sciorra VA, Daniel L, Bell RM (1996) Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated madin-darby canine kidney cells. J Biol Chem 271:8472–8480

    PubMed  CAS  Google Scholar 

  • Gillooly DJ, Melendez AJ, Hockaday AR, Hanett MM, Allen JM (1999) Endocytosis and vesicular trafficking of immune complexes and activation of phospholipase D by the human high-affinity IgG receptor requires distinct phosphoinositide 3-kinase activities. Biochem J 344:605–611

    PubMed  CAS  Google Scholar 

  • Go M, Sekiguchi K, Nomura H, Kikkawa U, Nishizuka Y (1987) Further studies on the specificity of diacylglycerol for protein kinase C activation. Biochem Biophys Res Commun 144:598–605

    PubMed  CAS  Google Scholar 

  • Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, Iurisci C, Luini A, Corda D, De Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns (4,5)P2 on the Golgi complex. Nat Cell Biol 1:280–287

    PubMed  CAS  Google Scholar 

  • Gomez-Cambronero J (1995) Immunoprecipitation of a phospholipase D activity with antiphosphotyrosine antibodies. J Inter Cyto Res 15:877–885

    CAS  Google Scholar 

  • Gómez-Muñoz A, Martin A, O'Brien L, Brindley, DN (1994) Cell-permeable ceramides inhibit the stimulation of DNA synthesis and phospholipase D activity by phosphatidate and lysophosphatidate in rat fibroblasts. J Biol Chem 269:8937–8943

    PubMed  Google Scholar 

  • Gómez-Muñoz A, Waggoner DW, O'Brien L, Brindley DN (1995) Interaction of ceramides, sphingosine, and sphingosine 1-phosphate in regulating DNA synthesis and phospholipase D activity. J Biol Chem 270:26318–26325

    PubMed  Google Scholar 

  • Gottlin EB, Rudolph AE, Zhao Y, Matthews HR, Dixon JE (1998) Catalytic mechanism of the phospholipase D superfamily proceeds via a covalent phosphohistidine intermediate. Proc Natl Acad Sci USA 95:9202–9207

    PubMed  CAS  Google Scholar 

  • Grange M, Sette C, Cuomo M, Conti M, Lagarde M, Prigent A-F, Némoz G (2000) The cAMP-specific phosphodiesterase PDE4D3 is regulated by phosphatidic acid binding. Consequences for cAMP signaling pathway and characterization of a phosphatidic acid binding site. J Biol Chem 275:33379–33387

    PubMed  CAS  Google Scholar 

  • Gruchalla RS, Dinh TT, Kennerly DA (1990) An indirect pathway of receptor-mediated 1,2-diacylglycerol formation in mast cells. I. IgE receptor-mediated activation of phospholipase D. J Immunol 144:2334–2342

    PubMed  CAS  Google Scholar 

  • Gu F, Gruenberg J (2000) ARF1 regulates pH-dependent COP functions in the early endocytic pathway. J Biol Chem 275:8154–8160

    PubMed  CAS  Google Scholar 

  • Guillemain I, Exton JH (1997) Effects of brefeldin A on phosphatidylcholine phospholipase D and inositolphospholipid metabolism in HL-60 cells. Eur J Biochem 249:812–819

    PubMed  CAS  Google Scholar 

  • Gustavsson L, Moehren G, Torres-Marquez ME, Benistant C, Rubin R, Hoek JB (1994) The role of cytosolic Ca2+, protein kinase C, and protein kinase A in hormonal stimulation of phospholipase D in rat hepatocytes. J Biol Chem 269:849–858

    PubMed  CAS  Google Scholar 

  • Ha K-S, Exton JH (1993b) Activation of actin polymerization by phosphatidic acid derived from phosphatidylcholine in IIC9 fibroblasts. J Cell Biol 123:1789–1796

    PubMed  CAS  Google Scholar 

  • Ha K-S, Exton JH (1993bb) Differential translocation of protein kinase C isozymes by thrombin and platelet-derived growth factor. A possible function for phosphatidylcholine-derived diacylglycerol. J Biol Chem 268:10534–10539

    PubMed  CAS  Google Scholar 

  • Ha K-S, Yeo E-J, Exton JH (1994) Lysophosphatidic acid activation of phosphatidylcholine-hydrolysing phospholipase D and actin polymerization by a pertussis toxin-sensitive mechanism. Biochem J 303:55–59

    PubMed  CAS  Google Scholar 

  • Hammond SM, Altshuller YM, Sung T-C, Rudge SA, Rose K, Engebrecht JA, Morris AJ, Frohman MA (1995) Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J Biol Chem 270:29640–29643

    PubMed  CAS  Google Scholar 

  • Hammond SM, Jenco JM, Nakashima S, Cadwallader K, Gu Q-m, Cook S, Nozawa Y, Prestwich GD, Frohman MA, Morris AJ (1997) Characterization of two alternately spliced forms of phospholipase D1. Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and Rho family monomeric GTP-binding proteins and protein kinase C-α. J Biol Chem 272:3860–3868

    PubMed  CAS  Google Scholar 

  • Han J-S, Chung J-K, Kang H-S, Donaldson J, Bae YS, Rhee SG (1996) Multiple forms of phospholipase D inhibitor from rat brain cytosol. Purification and characterization of heat-labile form. J Biol Chem 271:11163–11169

    PubMed  CAS  Google Scholar 

  • Hannun YA, Loomis CR, Bell RM (1986) Protein kinase C activated in mixed micelles. Mechanistic implications of phospholipid, diacylglycerol, and calcium interdependencies. J Biol Chem 261:7184–7190

    PubMed  CAS  Google Scholar 

  • Hardwick JS, Sefton BM (1997) The activated form of the Lck tyrosine protein kinase in cells exposed to hydrogen peroxide is phosphorylated at both Tyr-394 and Tyr-505. J Biol Chem 272:25429–25432

    PubMed  CAS  Google Scholar 

  • Hermans SWG, Engelmann B, Reinhardt U, Bartholomeus-Van Nooij IGP, De Pont JJHHM, Willems PHGM (1996) Diradylglycerol formation in cholecystokinin-stimulated rabbit pancreatic acini assessment of precursor phospholipids by means of molecular species analysis. Eur J Biochem 235:73–81

    PubMed  CAS  Google Scholar 

  • Hess JA, Ross AH, Qiu R-G, Symons M, Exton JH (1997) Role of Rho family proteins in phospholipase D activation by growth factors. J Biol Chem 272:1615–1620

    PubMed  CAS  Google Scholar 

  • Hodgkin MN, Clark JM, Rose S, Saqib K, Wakelam MJO (1999) Characterization of the regulation of phospholipase D activity in the detergent-insoluble fraction of HL60 cells by protein kinase C and small G-proteins. Biochem J 339:87–93

    PubMed  CAS  Google Scholar 

  • Hodgkin MN, Masson MR, Powner D, Saqib KM, Ponting CP, Wakelam MJO (1999) Phospholipase D regulation and localization is dependent upon a phosphatidylinositol 4,5-bisphosphate-specific PH domain. Curr Biol 10:43–46

    Google Scholar 

  • Hoer A, Cetindag C, Oberdisse E (2000) Influence of phosphatidylinositol 4,5-bisphosphate on human phospholipase D1 wild-type and deletion mutants: is there evidence for an interaction of phosphatidylinositol 4,5-bisphosphate with the putative pleckstrin homology domain. Biochim Biophys Acta 1481:189–201

    PubMed  CAS  Google Scholar 

  • Holbrook PG, Pannell LK, Daly JW (1991) Phospholipase D-catalyzed hydrolysis of phosphatidylcholine occurs with P-O bond cleavage. Biochim Biophys Acta 1984:155–158

    Google Scholar 

  • Holub BJ, Kuksis A (1978) Metabolism of molecular species of diacylglycerophospholipids. Adv Lipid Res 16:1–125

    PubMed  CAS  Google Scholar 

  • Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase α is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521–532

    PubMed  CAS  Google Scholar 

  • Hong J-H, Oh S-O, Lee M, Kim Y-R, Kim D-U, Hurr GM Lee JH, Lim K, Hwang B-D, Park S-K (2001) Enhancement of lysophosphatidic acid-induced ERK phosphorylation by phospholipase D1 via the formation of phosphatidic acid. Biochem Biophys Res Commun 281:1337–1342

    PubMed  CAS  Google Scholar 

  • Hong J-X, Lee F-JS, Patton WA Lin CY, Moss J, Vaughan M (1998) Phospholipid-and GTP-dependent activation of cholera toxin and phospholipase D by human ADP-ribosylation factor-like protein 1 (HARL1). J Biol Chem 273:15872–15876

    PubMed  CAS  Google Scholar 

  • Hooley R, Yu C-Y, Symons M, Barber DL (1996) Gα13 stimulates Na+−H+ exchange through distinct Cdc42-dependent and RhoA-dependent pathways. J Biol Chem 271:6152–6168

    PubMed  CAS  Google Scholar 

  • Horn JM, Lehman JA, Alter G, Horwitz J, Gomez-Cambronero J (2001) Presence of a phospholipase D (PLD) distinct from PLD1 or PLD2 in human neutrophils: Immunobiochemical characterization and initial purification. Biochim Biophys Acta 1530:97–110

    PubMed  CAS  Google Scholar 

  • Houle MG, Kahn RA, Naccache PH, Bourgoin S (1995) ADP-ribosylation factor translocation correlates with potentiation of GTPγS-stimulated phospholipase D activity in membrane fractions of HL-60 cells. J Biol Chem 270:22795–22800

    PubMed  CAS  Google Scholar 

  • Houle MG, Naccache PH, Bourgoin S (1999) Tyrosine kinase-regulated small GTPase translocation and the activation of phospholipase D in HL60 granulocytes. J Leukoc Biol 66:1021–1030

    PubMed  CAS  Google Scholar 

  • Huang C, Cabot MC (1990) Vasopressin-induced polyphospoinositide and phosphatidylcholine degradation in fibroblasts. Temporal relationship for formation of phospholipase C and phospholipase D hydrolysis products. J Biol Chem 265:17468–17473

    PubMed  CAS  Google Scholar 

  • Huang C-K, Bonak V, Laramee GR, Casnellie JE (1990) Protein tyrosine phosphorylation in rabbit peritoneal neutrophils. Biochem J 269:431–436

    PubMed  CAS  Google Scholar 

  • Huckle WR, Dy RC, Earp HS (1992) Calcium-dependent increase in tyrosine kinase activity stimulated by angiotensin II. Proc Natl Acad Sci USA 89:8837–8841

    PubMed  CAS  Google Scholar 

  • Hurst KM, Chataway TK, Hughes BP, Barritt GJ (1991) Low molecular weight GTP-binding proteins in hepatocytes and an assessment of the role of p21ras proteins in the activation of phospholipase D. Biochem Internat 24:507–516

    CAS  Google Scholar 

  • Irving HR, Exton JH (1987) Phosphatidylcholine breakdown in rat liver plasma membranes. Roles of guanine nucleotides and P2-purinergic agonists. J Biol Chem 262:3440–3443

    PubMed  CAS  Google Scholar 

  • Ito Y, Nakashima S, Kanoh H, Nozawa Y (1997a) Implication of Ca2+-dependent protein Tyrosine phosphorylation in carbachol-induced phospholipase D activation in rat Pheochromocytoma PC12 cells. J Neurochem 68:419–425

    PubMed  CAS  Google Scholar 

  • Ito Y, Nakashima S, Nozawa Y (1997b) Hydrogen peroxide-induced phospholipase D activation in rat pheochromocytoma PC12 cells: Possible involvement of Ca2+-dependent protein tyrosine kinase. J Neurochem 69:729–736

    PubMed  CAS  Google Scholar 

  • Iyer SS, Kusner DJ (1999) Association of phospholipase D activity with the detergent-insoluble cytoskeleton of 1937 promonocytic leukocytes. J Biol Chem 274:2350–2359

    PubMed  CAS  Google Scholar 

  • Jackowski S, Rock CO (1989) Stimulation of phosphatidylinositol 4,5-bisphosphate phospholipase C activity by phosphatidic acid. Arch Biochem Biophys 268:516–524

    PubMed  CAS  Google Scholar 

  • Jaken S (1997) Protein kinase C intracellular binding proteins. In: Molecular Biology Intelligence Unit. Eds.: Parker PJ & Dekker LV, R.G. Landes Company (Austin), pp 179–188

    Google Scholar 

  • Jenco JM, Rawlingson A, Daniels B, Morris AJ (1998) Regulation of phospholipase D2: Selective inhibition of mammalian phospholipase D isoenzymes by α-and β-synucleins. Biochem 37:4901–4909

    CAS  Google Scholar 

  • Jenkins GH, Fisette PL, Anderson RA (1994) Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem 269:11547–11554

    PubMed  CAS  Google Scholar 

  • Jiang H, Luo J-Q, Wolfman A, Foster DA (1995a) Ras mediates the activation of phospholipase D by v-Src. J Biol Chem 270:6006–6009

    PubMed  CAS  Google Scholar 

  • Jiang H, Luo J-Q, Urano T, Frankel P, Lu Z, Foster DA, Feig LA (1995b) Involvement of Ral GTPase in v-Src-induced phospholipase D activation. Nature 378:409–412

    PubMed  CAS  Google Scholar 

  • Jinsi A, Paradise J, Deth RC (1996) A tyrosine kinase regulates α-adrenoceptor-stimulated contraction and phospholipase D activation in the rat aorta. Eur J Pharmacol 302:183–190

    PubMed  CAS  Google Scholar 

  • Jones AT, Clague MJ (1997) Regulation of early endosome fusion by phospholipase D activity. Biochem Biophys Res Commun 236:285–288

    PubMed  CAS  Google Scholar 

  • Jones DH, Bax B, Fensome A, Cockcroft S (1999) ADP ribosylation factor 1 mutants identify a phospholipase D effector region and reveal that phospholipase D participates in lysosomal secretion but is not sufficient for recruitment of coatomer 1. Biochem J 341:185–192

    PubMed  CAS  Google Scholar 

  • Jones DH, Morris JB, Morgan CP, Kondo H, Irvine RF, Cockcroft S (2000) Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the Golgi compartment. J Biol Chem 275:13962–13966

    PubMed  CAS  Google Scholar 

  • Jones GA, Carpenter G (1993) The regulation of phospholipase C-γ1 by phosphatidic acid. Assessment of kinetic parameters. J Biol Chem 268:20845–20850

    PubMed  CAS  Google Scholar 

  • Jones MJ, Murray AW (1995) Evidence that ceramide selectively inhibits protein kinase C-α translocation and modulates bradykinin activation of phospholipase D. J Biol Chem 270:5007–5013

    PubMed  CAS  Google Scholar 

  • Just I, Selzer J, Wilm M, von Eichel-Streiber C, Mann M, Aktories K (1995) Glycosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–503

    PubMed  CAS  Google Scholar 

  • Kahn RA, Yucel JK, Malhotra V (1993) ARF signaling: A potential role for phospholipase D in membrane traffic. Cell 75:1045–1048

    PubMed  CAS  Google Scholar 

  • Khan WA, Blobe GC, Richards AL, Hanun YA (1994) Identification, partial purification, and characterization of a novel phospholipid-dependent and fatty acid-activated protein kinase from human platelets. J Biol Chem 269:9729–9735

    PubMed  CAS  Google Scholar 

  • Kam Y, Exton JH (2001) Phospholipase D activity is required for actin stress fiber formation in fibroblasts. Molec Cell Biol 21:4055–4066

    PubMed  CAS  Google Scholar 

  • Kanoh H, Williger B-T, Exton JH (1997) Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation facator, is recruited to Golgi membranes. J Biol Chem 272:5421–5429

    PubMed  CAS  Google Scholar 

  • Katayama K, Kodaki T, Nagamachi Y, Yamashita S (1998) Cloning, differential regulation and tissue distribution of alternatively spliced isoforms of ADP-ribosylation-factor-dependent phospholipase D from rat liver. Biochem J 329:647–652

    PubMed  CAS  Google Scholar 

  • Katoh H, Aoki J, Yamaguchi Y, Kitano Y, Ichikawa A, Negishi M (1998) Constitutively active Gα12, Gα13 and Gαq induce Rho-dependent neurite retraction through different signaling pathways. J Biol Chem 273:28700–28707

    PubMed  CAS  Google Scholar 

  • Kaszkin M, Richards J, Kinzel V (1992) Proposed role of phosphatidic acid in the extracellular control of the transition from G2 to mitosis exerted by epidermal growth factor in A431 cells. Canc Res 52627–5634

    Google Scholar 

  • Keeley SJ, Calandrella SO, Barrett KE (2000) Carbachol-stimulated transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T84 cells is mediated by intracellular Ca2+, PYK-2, and p60src, J Biol Chem 275:12619–12625

    Google Scholar 

  • Keller J, Schmidt M, Hussein B, Rumenapp U, Jakobs KH (1997) Muscarinic receptor-stimulated cytosol-membrane translocation of RhoA. FEBS Lett 403:299–302

    PubMed  CAS  Google Scholar 

  • Kennerly D (1990) Phosphatidylcholine is a quantitatively more important source of increased 1,2-diacylglycerol than is phosphatidylinositol in mast cells. J Immunol 144:3912–3919

    PubMed  CAS  Google Scholar 

  • Kessels GCR, Roos D, Verhoeven AJ (1991) fMet-Leu-Phe-induced activation of phospholipase D in human neutrophils. Dependence on changes in cytosolic free Ca2+ concentration and relation with respiratory burst activation. J Biol Chem 266:23152–23156

    PubMed  CAS  Google Scholar 

  • Kiley S, Schapp D, Parker P, Hsieh L-L, Jaken S (1990) Protein kinase C heterogeneity in GH4C1 rat pituitary cells. J Biol Chem 265:15704–15712

    PubMed  CAS  Google Scholar 

  • Kim JH, Lee SD, Han JM, Lee TG, Kim Y, Park JB, Lambeth JD, Suh P-G, Ryu SH (1998) Activation of phospholipase D1 by direct interaction with ADP-ribosylation factor 1 and RalA. FEBS Lett 430:231–235

    PubMed  CAS  Google Scholar 

  • Kim JH, Han JM, Lee S, Kim Y, Lee TG, Park JB, Lee SD, Suh P-G, Ryu SH (1999) Phospholipase D1 in caveolae: Regulation by protein kinase Cα and caveolin-1. Biochem J 38:3763–3769

    CAS  Google Scholar 

  • Kim JH, Kim Y, Lee SD, Lopez I, Arnold RS, Lambeth JD, Suh P-G, Ryu SH (1999a) Selective activation of phospholipase D2 by unsaturated fatty acid. FEBS Lett 454:42–46

    PubMed  CAS  Google Scholar 

  • Kim Y, Kim J-E, Lee SD, Lee TG, Kim JH, Park JB, Han JM, Jang SK, Suh P-G, Ryu SH (1999b) Phospholipase D1 is located and activated by protein kinase Cα in the plasma membrane in 3Y1 fibroblast cell. Biochim Biophys Acta 1436:319–330

    PubMed  CAS  Google Scholar 

  • Kim Y, Han JM, Han BR, Lee K-A, Kim JH Lee BD, Jang I-H, Suy P-G, Ryu SH (2000) Phospholipase D1 is phosphorylated and activated by protein kinase C in caveolin-enriched microdomains within the plasma membrane. J Biol Chem 275:13621–13627

    PubMed  CAS  Google Scholar 

  • Kishikawa K, Chalfant CE, Perry DK, Bielawska A, Hannun YA (1999) Phosphatidic acid is a potent and selective inhibitor of protein phosphatase 1 and an inhibitor of ceramide-mediated responses. J Biol Chem 274:21335–21341

    PubMed  CAS  Google Scholar 

  • Kiss Z, Petrovics G, Olah Z, Lehel C, Anderson WB (1999) Overexpression of protein kinase C-ε and its regulatory domains in fibroblasts inhibits phorbol ester-induced phospholipase D activity. Arch Biochem Biophys 363:121–128

    PubMed  CAS  Google Scholar 

  • Klein J, Chalifa V, Liscovitch M, Löffelholz K (1995) Role of phospholipase D activation in nervous system physiology and pathophysiology. J Neurochem 65:1445–1455

    PubMed  CAS  Google Scholar 

  • Kodaki T, Yamashita S (1997) Cloning, expression, and characterization of a novel phospholipase D complementary DNA from rat brain. J Biol Chem 272:11408–11413

    PubMed  CAS  Google Scholar 

  • Kondo T, Inui H, Konishi F, Inagami T (1992) Phospholipase D mimics platelet-derived growth factor as a competence factor in vascular smooth muscle cells. J Biol Chem 267:23609–23616

    PubMed  CAS  Google Scholar 

  • Koonin EV (1996) A duplicated catalytic motif in a new superfamily of phosphohydrolases and phospholipid synthases that includes poxvirus envelope proteins. Trends Biochem Sci 21:242–243

    PubMed  CAS  Google Scholar 

  • Kozawa O, Blume-Jensen P, Heldin C-H, Ronnstrand LL (1997) Involvement of phosphatidylinositol 3′-kinase in stem-cell-factor-induced phospholipase D activation and arachidonic acid release. Eur J Biochem 248:149–155

    PubMed  CAS  Google Scholar 

  • Kranenburg O, Moolenaar WH (2001) Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonists. Oncogene 20:1540–1546

    PubMed  CAS  Google Scholar 

  • Kranenburg O, Poland M, Gebbink M, Oomen L, Moolenaar WH (1997) Dissociation of LPA-induced cytoskeletal contraction from stress fiber formation by differential localization of RhoA. J Cell Sci 110:2417–2427

    PubMed  CAS  Google Scholar 

  • Ktistakis NT, Brown HA, Sternweis PC, Roth MG (1995) Phospholipase D is present in Golgi-enriched membranes and its activation by ADP-ribosylation factor is sensitive to brefeldin. A Proc Natl Acad Sci USA 92:4952–4956

    CAS  Google Scholar 

  • Ktistakis NT, Brown HA, Waters MG, Sternweis PC, Roth MG (1996) Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J Cell Biol 134:295–306

    PubMed  CAS  Google Scholar 

  • Kuai J, Boman AL, Arnold RS, Zhu X, Kahn RA (2000) Effects of activated ADP-ribosylation factors on Golgi morphology require neither activation of phospholipase D1 nor recruitment of coatomer. J Biol Chem 275:4022–4032

    PubMed  CAS  Google Scholar 

  • Kuksis A, Marai L, Breckendrige WC, Gornall DA, Stachnyk O (1968) Molecular species of lecithins of some functionally distinct rat tissues. Can J Physiol Pharmacol 46:511–524

    PubMed  CAS  Google Scholar 

  • Kumada T, Nakashima S, Nakamura Y, Miyata H, Nozawa Y (1995) Antigen-mediated phospholipase D activation in rat basophilic leukemia (RBL-2H3) cells: possible involvement of calcium/calmodulin. Biochim Biophys Acta 1258:107–114

    PubMed  Google Scholar 

  • Kuribara H, Tago K, Yokozeki T, Sasaki T, Takai Y, Morii N, Narumiya S, Katadda T, Kanaho Y (1995) Synergistic activation of rat brain phospholipase D by ADP-ribosylation factor and rhoA p21, and its inhibition by Clostridium botulinum C3 exoenzyme. J Biol Chem 270:25667–25671

    PubMed  CAS  Google Scholar 

  • Kusaka I, Ishikawa S-E, Higashiyama M, Saito T, Nagasaka S, Saito T (1986) The activation of phospholipase D participates in the mitogenic action of arginine vasopressin in cultured rat glomerular mesangial cells. Endocrinology 137:5421–5428

    Google Scholar 

  • Kusner DJ, Schmoisch SJ Dubyak GR (1993) ATP-induced potentiation of G-protein-dependent phospholipase D activity in a cell-free system from U937 promonocytic leukocytes. J Biol Chem 268:19973–19982

    PubMed  CAS  Google Scholar 

  • Leach KL, Ruff VA, Wright TM, Pessin MS, Raben DM (1991) Dissociation of protein kinase C activation and sn-1,2-diacylglycerol formation. Comparison of phosphatidylinositol-and phosphatidylcholine-derived diglycerides in α-thrombin-stimulated fibroblasts. J Biol Chem 265:3215–3221

    Google Scholar 

  • Leduc I, Meloche S (1995) Angiotensin II stimulates tyrosine phosphorylation of the focal adhesion-associated protein paxillin in aortic smooth muscle cells. J Biol Chem 270:4401–4404

    PubMed  CAS  Google Scholar 

  • Lee C, Fisher SK, Agranoff BW, Hajra AK (1991) Quantitative analysis of molecular species of diacylglycerol and phosphatidate formed upon muscarinic receptor activation of human SK-N-SH neuroblastoma cells. J Biol Chem 266:22837–22846

    PubMed  CAS  Google Scholar 

  • Lee C, Kang H-S, Chung J-K, Sekiya F, Kim J-R, Han J-S, Kim SR, Bae YS, Morris AR, Rhee SG (1997) Inhibition of phospholipase D by clathrin assembly protein 3 (AP3). J Biol Chem 272:15986–15992

    PubMed  CAS  Google Scholar 

  • Lee S, Park JB, Kim JH, Kim Y, Kim JH, Kim Y, Kim JH, Shin K-J, Lee JS, Ha SH, Suh P-G, Ryu SH (2001) Actin directly interacts with phospholipase D inhibiting its activity. J Biol Chem 276:28252–28260

    PubMed  CAS  Google Scholar 

  • Lee SY, Yeo E-J, Choi M-U (1998) Phospholipase D activity in L1210 cells: A model for oleate-activated phospholipase D in intact mammalian cells. Biochem Biophys Res Commun 244:825–831

    PubMed  CAS  Google Scholar 

  • Lee YH, Kim HS, Pai J-K, Ryu SH, Suh P-G (1994) Activation of phospholipase D induced by platelet-derived growth factor is dependent upon the level of phospholipase C-γ1. J Biol Chem 269:26842–26847

    PubMed  CAS  Google Scholar 

  • Leiros I, Secundo F, Zambonelli C, Servi S, Hough E (2000) The first crystal structure of a phospholipase D. Structure 8:655–667

    PubMed  CAS  Google Scholar 

  • Le Stunff HL, Dokhac L, Bourgoin S, Bader M-F, Harbon S (2000a) Phospholipase D in rat myometrium: occurrence of a membrane-bound ARF6 (ADP-ribosylation factor 6)-regulated activity controlled by (( subunits of heterotrimeric G-proteins. Biochem J 352:491–499

    PubMed  Google Scholar 

  • Le Stunff H, Dokhac L, Harbon S (2000b) The roles of protein kinase C and tyrosine kinases in mediating endothelin-1-stimulated phospholipase D activity in rat myometrium: Differential inhibition by ceramides and cyclic AMP. J Pharmacol Exper Therap 292:628–637

    Google Scholar 

  • Levade T, Jaffrézou J-P (1999) Signalling sphingomyelineases: which, where, how and why? Biochim Biophys Acta 1438:1–17

    PubMed  CAS  Google Scholar 

  • Li Y, Shiels AJ, Maszak G, Byron KL (2001) Vasopressin-stimulated Ca2+ spiking in vascular smooth muscle cells involves phospholipase D. Am J Physiol Heart Circ Physiol 280:H2628–H2664

    Google Scholar 

  • Limatola C, Schaap D, Moolenaar WH, van Blitterswij WJ (1994) Phosphatidic acid activation of protein kinases C-Φ oversexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J 304:1001–1008

    PubMed  CAS  Google Scholar 

  • Lin P, Wiggan GA, Gilfillan AM (1991) Activation of phospholipase D in a rat mast (RBL 2H3) cell line. A possible unifying mechanisms for IgE-dependent degranulation and arachidonic acid metabolite release. J Immunol 146:1609–1616

    PubMed  CAS  Google Scholar 

  • Liscovitch M, Chalifa V, Pertile P, Chen C-S, Cantley LC (1994) Novel function of phosphatidylinositol 4,5-bisphosphate as a cofactor for brain membrane phospholipase D. J Biol Chem 269:21403–21406

    PubMed  CAS  Google Scholar 

  • Liscovitch M, Czarny M, Fiucci G, Lavie Y, Tang X (1999) Localization and possible functions of phospholipase D isozymes. Biochim Biophys Acta 1439:245–263

    PubMed  CAS  Google Scholar 

  • Litosch I (2000) Regulation of phospholipase C-β1 activity by phosphatidic acid. Biochem 39:7736–7743

    CAS  Google Scholar 

  • Liu MY, Gutowski S, Sternweis PC (2001) The C-terminus of mammalian PLD is required for catalytic activity. J Biol Chem 276:5556–5562

    PubMed  CAS  Google Scholar 

  • Lopez I, Burns DJ, Lambeth JD (1995) Regulation of phospholipase D by protein kinase C in human neutrophils. Conventional isoforms of protein kinase C phosphorylate a phospholipase D-related component in the plasma membrane. J Biol Chem 270:19465–19472

    PubMed  CAS  Google Scholar 

  • Lopez I, Arnold RS, Lambeth JD (1998) Cloning and initial characterization of a human phospholipase D2 (hPLD2). J Biol Chem 273: 12846–12852

    PubMed  CAS  Google Scholar 

  • Lu Z, Hornia A, Joseph T, Sukezane T, Frankel P, Zhong M, Bychenok S, Xu L, Feig LA, Foster DA (2000) Phospholipase D and RalA cooperate with the epidermal growth factor receptor to transform 3Y1 rat fibroblasts. Molec Cell Biol 20:462–467

    PubMed  CAS  Google Scholar 

  • Lucas L, del Peso P, Rodriguez P, Penalva V, Lacal JC (2000) Ras protein is involved in the physiological regulation of phospholipase D by platelet derived growth factor. Oncogene 19:431–437

    PubMed  CAS  Google Scholar 

  • Lukowski S, Lecomte M-C, Mira J-P, Gautero H, Russo-Marie F, Geny B (1996) Inhibition of phospholipase D activity by fodrin. An active role for the cytoskeleton. J Biol Chem 271:24164–24171

    PubMed  CAS  Google Scholar 

  • Lukowski S, Mira J-P, Zachowski A, Geny B (1998) Fodrin inhibits phhospholipases A2,C, and D by decreasing polyphosphoinositide cell content. Biochem Biophys Res Commun 248:278–284

    PubMed  CAS  Google Scholar 

  • Luo J-Q, Liu X, Hammond SH, Colley WC, Feig LA, Frohman MA, Morris AJ, Foster DA (1997) RalA interacts directly with the Arf-responsive PIP2-dependent phospholipase D1. Biochem Biophys Res Commun 235:854–859

    PubMed  CAS  Google Scholar 

  • Luo J-Q, Liu X, Frankel P, Routunda T, Ramos M, Flom J, Jiang H, Fieg LA, Morris AJ, Kahn RA, Foster DA (1998) Functional association between Arf and RalA in active phospholipase D complex. Proc Natl Acad Sci USA 95:3632–3637

    PubMed  CAS  Google Scholar 

  • MacDonald JIS, Sprecher H (1989) Distribution of arachidonic acid in choline-and ethanolamine-containing phosphoglycerides in subfactionated human neutrophils. J Biol Chem 264:17718–17726

    PubMed  CAS  Google Scholar 

  • MacNulty EE, Plevin R, Wakelam MJO (1990) Stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate and phosphatidylcholine by endothelin, a complete mitogen for Rat-1 fibroblasts. Biochem J 272:761–766

    PubMed  CAS  Google Scholar 

  • McPhail LC, Qualliotine-Mann D, Waite KA (1995) Cell-free activation of neutrophil NADPH oxidase by a phosphatidic acid-regulated protein kinase. Proc Natl Acad Sci USA 92:7931–7935

    PubMed  CAS  Google Scholar 

  • Mahadevappa VG, Holub BJ (1982) The molecular species composition of individual diacyl phospholipids in human platelets. Biochim Biophys Acta 713:73–79

    PubMed  CAS  Google Scholar 

  • Malcolm K, Elliott CM, Exton JH (1996) Evidence for Rho-mediated agonist stimulation of phospholipase D in Rat1 fibroblasts. Effects of Clostridium Botulinum C3 exoenzyme. J Biol Chem 271:13135–13139

    PubMed  CAS  Google Scholar 

  • Manifava M, Sugars J, Ktistakis NT (1999) Modification of catalytically active phospholipase D1 with fatty acid in vivo. J Biol Chem 274:1072–1077

    PubMed  CAS  Google Scholar 

  • Mao J, Yuan H, Xie W, Wu D (1998) Guanine nucleotide exchange factor GEF115 specifically mediates activation of Rho and serum response factor by the G protein α subunit G(13). Proc Natl Acad Sci USA 95:12973–12976

    PubMed  CAS  Google Scholar 

  • Marcil J, Harbour D, Naccache PH, Bourgoin S (1997) Human phospholipase D1 can be tyrosine-phosphorylated in HL-60 granulocytes. J Biol Chem 272:20660–20664

    PubMed  CAS  Google Scholar 

  • Martin TFJ, Hsieh K-P, Porter BW (1990) The sustained second phase of hormone-stimulated diacylglycerol accumulation does not activate protein kinase C in GH3 cells. J Biol Chem 265:7623–7631

    PubMed  CAS  Google Scholar 

  • Martinson EA, Goldstein D, Brown JH (1989) Muscarinic receptor activation of phosphatidyl-choline hydrolysis. Relationship to phosphoinositide hydrolysis and diacylglycerol metabolism. J Biol Chem 264:14748–14754

    PubMed  CAS  Google Scholar 

  • Martinson E, Scheible S, Presek P (1994) Inhibition of phospholipase D of human platelets by protein tyrosine kinase inhibitors. Cell Mol Biol 40:627–634

    PubMed  CAS  Google Scholar 

  • Massenburg D, Han J-S, Liyanage M, Patton WA, Rhee SG, Moss J, Vaughan M (1994) Activation of rat brain phospholipase D by ADP-ribosylation factors, 1, 5, and 6: separation of ADP-ribosylation factor-dependent and oleate-dependent enzymes. Proc Natl Acad Sci USA 91:11718–11722

    PubMed  CAS  Google Scholar 

  • Matozaki T, Williams JA (1989) Multiple sources of 1,2-diacylglycerol in isolated rat pancreatic acini stimulation by cholecystokinin. Involvement of phosphatidylinositol bisphosphate and phosphatidylcholine hydrolysis. J Biol Chem 264:14729–14734

    PubMed  CAS  Google Scholar 

  • Meacci E, Vasta V, Moorman JP, Bobak DA, Bruni P, Moss J, Vaughan M (1999) Effect of Rho and ADP-ribosylation factor GTPases on phospholipase D activity in intact human adenocarcinoma A549 cells. J Biol Chem 274:18605–18612

    PubMed  CAS  Google Scholar 

  • Meier KE, Gibbs TC, Knoepp SM, Ella KM (1999) Expression of phospholipase D isoforms in mammalian cells. Biochim Biophys Acta 1439:199–213

    PubMed  CAS  Google Scholar 

  • Michaely PA, Mineo C, Ying Y-s, Anderson RGW (1999) Polarized distribution of endogenous Rac1 and RhoA at the cell surface. J Biol Chem 274:21430–21436

    PubMed  CAS  Google Scholar 

  • Min DS, Exton JH (1998) Phospholipase D is associated in a phorbol ester-dependent manner with protein kinase C-α and with a 220-kDa protein which is phosphorylated on serine and threonine. Biochem Biophys Res Commun 248:533–537

    PubMed  CAS  Google Scholar 

  • Min DS, Kim E-G, Exton JH (1998a) Involvement of tyrosine phosphorylation and protein kinase C in the activation of phospholipase D by H2O2 in Swiss 3T3 fibroblasts. J Biol Chem 273:29986–29994

    PubMed  CAS  Google Scholar 

  • Min DS, Park S-K, Exton JH (1998b) Characterization of a rat brain phospholipase D isozyme. J Biol Chem 273:7044–7051

    PubMed  CAS  Google Scholar 

  • Min DS, Cho NJ, Yoon SH, Lee YH, Hahn S-J, Lee K-H, Kim M-S, Jo Y-H (2000) Phospholipase C, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and tyrosine phosphorylation are involved in carbachol-induced phospholipase D activation in Chinese hamster ovary cells expressing muscarinic acetylcholine receptor of Caenorhabditis elegans. J Neurochem 75:274–281

    PubMed  CAS  Google Scholar 

  • Mitchell R, McCulloch D, Lutz E, Johnson M, MacKenzie C, Fennell M, Fink G, Zhou W, Sealfon SC (1998) Rhodopsin-family receptors associate with small G proteins to activate phospholipase D. Nature 392:411–414

    PubMed  CAS  Google Scholar 

  • Morash SC, Roose SD, Byers DM, Ridgway ND, Cook HW (1998) Overexpression of myristoylated alanine-rich C-kinase substrate enhances activation of phospholipase D by protein kinase C in SK-N-MC human neuroblastoma cells. Biochem J 332:321–327

    PubMed  CAS  Google Scholar 

  • Morash SC, Byers DM, Cook HW (2000) Activation of phospholipase D by PKC and GTPγS in human neuroblastoma cells overexpressing MARCKS. Biochim Biophys Acta 1487:177–189

    PubMed  CAS  Google Scholar 

  • Morgan CP, Sengelov H, Whatmore J, Borregaard N, Cockcroft S (1997) ADP-ribosylation-factor-regulated phospholipase D activity localizes to secretory vesicles and mobilizes to the plasma membrane following N-formylmethionylleucyl-phenylalanine stimulation of human neutrophils. Biochem J 325:581–585

    PubMed  CAS  Google Scholar 

  • Moritz A, De Graan PNE, Gispen WH, Wirtz KWA (1992) Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem 267:7207–7210

    PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1998) Molecules in the ARF orbit. J Biol Chem 273:21431–21434

    PubMed  CAS  Google Scholar 

  • Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6:227–233

    PubMed  CAS  Google Scholar 

  • Murthy KS, Zhou H, Grider JR, Makhlouf GM (2001) Sequential activation of heterotrimeric and monomeric G proteins mediates PLD activity in smooth muscle. Am. J. Physiol 280:G381–G388

    CAS  Google Scholar 

  • Musial A, Mandal A, Coroneos E, Kester M (1995) Interleukin-1 and endothelin stimulate distinct species of diglycerides that differentially regulate protein kinase C in mesangial cells. J Biol Chem 270:21632–21638

    PubMed  CAS  Google Scholar 

  • Muthalif MM, Parmentier J-H, Benter IF, Karzoun N, Ahmed A, Khandekar Z, Adl MZ, Bourgoin S, Malik KU (2000) Ras/mitogen-activated protein kinase mediates norepinephrine-induced phospholipase D activation in rabbit aortic smooth muscle cells by a phosphorylation-dependent mechanism. J Pharmacol Exper Therap 293:268–274

    CAS  Google Scholar 

  • Nakamura T, Abe A, Balazovich KJ, Wu D, Suchard SJ, Boxer LA, Shayman JA (1994) Ceramide regulates oxidant release in adherent human neutrophils. J Biol Chem 269:18384–18389

    PubMed  CAS  Google Scholar 

  • Natarajan V, Taher MM, Roehm B, Parinandi NL, Schmid HHO, Kiss Z, Garcia JGN (1993) Activation of endothelial cell phospholipase D by hydrogen peroxide and fatty acid hydroperoxide. J Biol Chem 268:930–937

    PubMed  CAS  Google Scholar 

  • Natarajan V, Scribner WM, Vepa S (1996) Regulation of phospholipase D by tyrosine kinases. Chem. Physics Lipids 80:103–116

    CAS  Google Scholar 

  • Nixon JS (1997) The biology of protein kinase C inhibitors. Eds.: Parker PJ & Dekker LV, R.G. Landes Company (Austin), pp 205–236

    Google Scholar 

  • Nobes C, Hall A (1994) Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Develop 4:77–81

    CAS  Google Scholar 

  • Offermanns S, Bombien E, Schultz G (1993) Thrombin Ca2+-dependently stimulates protein tyrosine phosphorylation in BC3H1 muscle cells. Biochem J 290:27–32

    PubMed  CAS  Google Scholar 

  • Ohguchi K, Banno Y, Nakashima S, Nozawa Y (1996) Regulation of membranebound phospholipase D by protein kinase C in HL60 cells. J Biol Chem 271:4366–4372

    PubMed  CAS  Google Scholar 

  • Ohguchi K, Kasai T, Nozawa Y (1997) Tyrosine phosphorylation of 100-115kDa proteins by phosphatidic acid generated via phospholipase D activation in HL60 granulocytes. Biochim Biophys Acta 1346:301–304

    PubMed  CAS  Google Scholar 

  • Ohtsuka T, Ozawa M, Okamura N, Ishibashi S (1989) Stimulatory effects of a short chain phosphtidate on superoxide anion production in guinea pig polymorphonuclear leukocytes. J Biochem 106:259–263

    PubMed  CAS  Google Scholar 

  • Oishi K, Takahashi M, Mukai H, Banno Y, Nakashima S, Kanaho Y, Nozawa Y, Ono Y (2001) PKN regulates phospholipase D1 through the direct interaction. J Biol Chem In press

    Google Scholar 

  • Ojio K, Banno Y, Nakashima S, Kato N, Watanabe K, Lyerly DM, Miyata H, Nozawa Y (1996) Effect of Clostridium difficile Toxin B on IgE receptor-mediated signal transduction in rat basophilic leukemia cells: Inhibition of phospholipase D activation. Biochem Biophys Res Commun 224:591–596

    PubMed  CAS  Google Scholar 

  • Olivier AR, Parker PJ (1992) Identification of multiple PKC isoforms in Swiss 3T3 cells: Differential down-regulation by phorbol ester. J Cell Physiol 152:240–244

    PubMed  CAS  Google Scholar 

  • Pachter, JA, Pai J-K, Mayer-Ezell R, Petrin JM, Dobek E, Bishop WR (1992) Differential regulation of phosphoinositide and phosphatidylcholine hydrolysis by protein kinase C-β1 overexpression. Effects on stimulation by α-thrombin, guanosine 5′-O-(thiotriphosphate), and calcium. J Biol Chem 267:9826–9830

    PubMed  CAS  Google Scholar 

  • Pai J-K, Siegel MI, Egan RW, Billah MM (1988) Phospholipase D catalyzes phospholipid metabolism in chemotactic peptide-stimulated HL-60 granulocytes. J Biol Chem 263:12472–12477

    PubMed  CAS  Google Scholar 

  • Pai J-K, Dobek EA, Bishop WR (1991) Endothelin-1 activates phospholipase D and thymidine incorporation in fibroblasts overexpressing protein kinase C(1). Cell Regul 2:897–903

    PubMed  CAS  Google Scholar 

  • Palicz A, Foubert TR, Jesaitis AJ, Marodi L, McPhail LC (2001) Phosphatidic acid and diacylglycerol directly activate NADPH oxidase by interacting with enzyme components. J Biol Chem 276:3090–3097

    PubMed  CAS  Google Scholar 

  • Pappan K, Wang X (1999) Molecular and biochemical properties and physiological roles of plant phospholipase D. Biochim Biophys Acta 1439:151–166

    PubMed  CAS  Google Scholar 

  • Pappan K, Zheng S, Wang X (1997) Identification and characterization of a novel plant phospholipase D that requires polyphosphoinositides and submicromolar calcium for activity in Arabidopsis. J Biol Chem 272:7048–7054

    PubMed  CAS  Google Scholar 

  • Park JB, Kim JH, Kim Y, Ha SH, Kim JH, Yoo J-S, Du G, Frohman MA, Suh P-G, Ryu SH (2000) Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by α-actinin in an ADP-ribosylation factor-reversible manner. J Biol Chem 275:21295–21301

    PubMed  CAS  Google Scholar 

  • Park S-K, Provost JJ, Bae CD, Ho W-T, Exton JH (1997) Cloning and characterization of phospholipase D from rat brain. J Biol Chem 272:29263–29271

    PubMed  CAS  Google Scholar 

  • Park S-K, Min DS, Exton JH (1998) Definition of the protein kinase C interaction site of phospholipase D. Biochem Biophys Res Commun 244:364–367

    PubMed  CAS  Google Scholar 

  • Parmentier J-H, Muthalif MM, Saeed AE, Malik KU (2001) Phospholipase D activation by norepinephrine is mediated by 12(S)-, 15(S)-, and 20-hydroxyeicosatetraeonoic acids generated by stimulation of cytosolic phospholipase A2. Tyrosine phosphorylation of phospholipase D2 in response to norepinephrine. J Biol Chem 276:15704–15711

    PubMed  CAS  Google Scholar 

  • Patton GM, Fasulo JM, Robins SJ (1982) Separation of phospholipids and individual molecular species of phospholipids by high-performance liquid chromatography. J Lipid Res 23:190–196

    PubMed  CAS  Google Scholar 

  • Pertile P, Liscovitch M, Chalifa V, Cantley LC (1995) Phosphatidylinositol 4,5-bisphosphate synthesis is required for activation of phospholipase D in U937 cells. J Biol Chem 270:5130–5135

    PubMed  CAS  Google Scholar 

  • Pessin MS, Raben DM (1989) Molecular species analysis of 1,2-diglycerides stimulated by α-thrombin in cultured fibroblasts. J Biol Chem 264:8729–8738

    PubMed  CAS  Google Scholar 

  • Pessin MS, Baldassare JJ, Raben DM (1990) Molecular species analysis of mitogen-stimulated 1,2-diglycerides in fibroblasts. Comparison of α-thrombin, epidermal growth factor, and platelet-derived growth factor. J Biol Chem 265:7959–7966

    PubMed  CAS  Google Scholar 

  • Pete MJ, Ross AH, Exton JH (1994) Purification and properties of phospholipase A1 from bovine brain. J Biol Chem 269:19494–19500

    PubMed  CAS  Google Scholar 

  • Pettit TR, Martin A, Horton T, Liossis C, Lord JM, Wakelam MJO (1997) Diacylglycerol and phosphatidate generated by phospholipases C and D, respectively, have distinct fatty acid compositions and functions. Phospholipase D-derived diacylglycerol does not activate protein kinase C in porcine aortic endothelial cells J Biol Chem 272:17354–17359

    Google Scholar 

  • Pfeilschifter J, Huwiler A (1993) A role for protein kinase C-ε in angiotensin II stimulation of phospholipase D in rat renal mesangial cells. FEBS Lett 331:267–271

    PubMed  CAS  Google Scholar 

  • Plevin R, Cook SJ, Palmer S, Wakelam MJO (1991) Multiple sources of sn-1,2-diacylglycerol in platelet-derived-growth-factor-stimulated Swiss 3T3 fibroblasts. Biochem J 279:559–565

    PubMed  CAS  Google Scholar 

  • Plonk SG, Park S-K, Exton JH (1998) The α-subunit of the heterotrimeric G protein G13 activates a phospholipase D isozyme by a pathway requiring Rho family GTPases. J Biol Chem 273:4823–4826

    PubMed  CAS  Google Scholar 

  • Ponting CP, Kerr ID (1996) A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active-site residues. Protein Sci 5:914–922

    PubMed  CAS  Google Scholar 

  • Popoff MR, Chaves-Olarate E, Lemichez E, von Eichel-Streiber C, Thelestam M, Chardin P, Cussac D, Antonny B, Chavrier P, Flatau G, Giry M, de Gunzburg J, Boquet P (1996) Ras, Rap, and Rac small GTP-binding proteins are targets for Clostridium sordellii lethal toxin glucosylation. J Biol Chem 271:10217–10224

    PubMed  CAS  Google Scholar 

  • Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF Receptor transactivation by G-protein-coupled receptors requires metallo-proteinase cleavage of proHB-EGF. Nature 402:884–888

    PubMed  CAS  Google Scholar 

  • Price BD, Morris JDH, Hall A (1989a) Stimulation of phosphatidylcholine break-down and diacylglycerol production by growth factors in Swiss 3T3 cells. Biochem J 264:509–515

    PubMed  CAS  Google Scholar 

  • Price BD, Morris JDH, Marshall CJ, Hall A (1989b) Stimulation of phosphatidylcholine hydrolysis, diacylglycerol release, and arachidonic acid production by oncogenic Ras is a consequence of protein kinase C activation. J Biol Chem 264:16638–16643

    PubMed  CAS  Google Scholar 

  • Provost JJ, Fudge J, Israelit S, Siddiqi AR, Exton JH (1996) Tissue-specific distribution and subcellular distribution of phospholipase D in rat: evidence for distinct RhoA-and ADP-ribosylation factor (ARF)-regulated isoenzymes. Biochem J 319:285–291

    PubMed  CAS  Google Scholar 

  • Qin W, Pappan K, Wang X (1997) Molecular heterogeneity of phospholipase D (PLD). Cloning of PLDγ and regulation of plant PLDγ,-β, and-α by polyphosphoinositides. J Biol Chem 272:28267–28273

    PubMed  CAS  Google Scholar 

  • Qualliotine-Mann D, Agwu DE, Ellenburg MD, McCall CE, McPhail LC (1993) Phosphatidic acid and diacylglycerol synergize in a cell-free system for activation of NADPH oxidase from human neutrophils. J Biol Chem 268:23843–23849

    PubMed  CAS  Google Scholar 

  • Quilliam LA, Der CJ, Brown JH (1990) GTP-binding protein-stimulated phospholipase D and phospholipase D activities in ras-transformed NIH 3T3 fibroblasts. Second Messengers and Phosphoproteins 13:59–67

    PubMed  CAS  Google Scholar 

  • Radhakrishna H, Donaldson JG (1997) ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J Cell Biol 139:49–61

    PubMed  CAS  Google Scholar 

  • Regier DS, Waite KA, Walliln R, McPhail LC (1999) A phosphatidic acid-activated protein Kinase and conventional protein kinase C isoforms phosphorylate p22phox, an NADPH oxidase component. J Biol Chem 274:36601–36608

    PubMed  CAS  Google Scholar 

  • Regier DS, Green DG, Sergeant S, Jesaitis AJ, McPhail LC (2000) Phosphorylation of p22phox is mediated by phospholipase D-dependent and-independent mechanisms. Correlation of NADPH oxidase activity and p22phox phosphorylation. J Biol Chem 275:28406–28412

    PubMed  CAS  Google Scholar 

  • Ren X-D, Bokoch GM, Traynor-Kaplan A, Jenins GH, Anderson RA, Schwartz MA (1996) Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in Swiss 3T3 cells. Mol Biol Cell 7:435–442

    PubMed  CAS  Google Scholar 

  • Rizzo MA, Shome K, Watkins SC, Romero G (2000) The recruitment of Raf-1 to membranes is mediated by direct interaction with phosphatidic acid and is independent of association with Ras. J Biol Chem 275:23911–23918

    PubMed  CAS  Google Scholar 

  • Rossi F, Grzeskowiak M, Della-Bianca V, Calzetti F, Gandini G (1990) Phosphatidic acid and not diacylglycerol generated by phospholipase D is functionally linked to the activation of the NADPH oxidase by fMLP in human neutrophils. Biochem Biophys Res Commun 168:320–327

    PubMed  CAS  Google Scholar 

  • Rudge SA, Morris AJ, Engebrecht JA (1998) Relocalization of phospholipase D activity mediates membrane formation during meiosis. J Cell Biol 140:81–90

    PubMed  CAS  Google Scholar 

  • Rudge SA, Engebrecht J (1999) Regulation and function of PLDs in yeast. Biochim Biophys Acta 1439:167–174

    PubMed  CAS  Google Scholar 

  • Rudolph AE, Stuckey JA, Zhao Y, Matthews HR, Patton WA, Moss J, Dixon JE (1999) Expression, characterization, and mutagenesis of the Yersinia pestis murine toxin, a phospholipase D superfamily member. J Biol Chem 274:11824–11831

    PubMed  CAS  Google Scholar 

  • Rümenapp U, Geiszt M, Wahn F, Schmidt M, Jakobs KH (1995) Evidence for ADP-ribosylation-factor-mediated activation of phospholipase D by m3 muscarinic acetylcholine receptor. Eur J Biochem 234:240–244

    PubMed  Google Scholar 

  • Rümenapp U, Schmidt M, Wahn F, Tapp E, Grannass A, Jakobs KH (1997) Characteristics of protein-kinase-C-and ADP-ribosylation-factor-stimulated phospholipase D activities in human embryonic kidney cells. Eur J Biochem 248:407–414

    PubMed  Google Scholar 

  • Rümenapp U, Asmus M, Schablowski H, Woznicki M, Han L, Jakobs KH, Fahimi-Vahid M, Michalek C, Wieland T, Schmidt M (2001) The M3 muscarinic acetylcholine receptor expressed in HEK-293 cells signals to phospholipase D via G12 but not Gq-type G proteins. regulators of G proteins as tools to dissect pertussis toxin-resistant G protein in receptor-effector coupling. J Biol Chem 276:2474–2479

    PubMed  Google Scholar 

  • Schieven GL, Kirihara JM, Burg DL, Geahlen RL, Ledbetter JA (1993) p72syk tyrosine kinase is activated by oxidizing conditions that induce lymphocyte tyrosine phosphorylation and Ca2+ signals. J Biol Chem 268:16688–16692

    PubMed  CAS  Google Scholar 

  • Schmidt M, Rümenapp U, Blenek C, Keller J, von Eichel-Streiber C, Jakobs KH (1996a) Inhibition of receptor signaling to phospholipase D by Clostridium dificile Toxin B. Role of Rho proteins. J Biol Chem 271:2422–2426

    PubMed  CAS  Google Scholar 

  • Schmidt M, Rümenapp U, Nehls C, Ott S, Keller J, von Eichel-Streiber C, Jakobs KH (1996b) Restoration of Clostridium difficile toxin-B-inhibited phospholipase D by phosphatidylinositol 4,5-bisphosphate. Eur J Biochem 240:707–712

    PubMed  CAS  Google Scholar 

  • Schmidt M, Voss M, Thiel M, Baur B, Grannas A, Tapp E, Cool RH, de Gunzburg J, von Eichel-Streiber C, Jakobs KH (1998) Specific inhibition of phorbol esterstimulated phospholipase D by Clostridium sordellii lethal toxin and Clostridiuim difficile toxin B-1470 in HEK-293 cells. J Biol Chem 273:7413–7422

    PubMed  CAS  Google Scholar 

  • Schmidt M, Vo\ M, Oude Weernink PA, Wetzel J, Amano M, Kaibuchi K, Jakobs KH (1999) A role for Rho-kinase in Rho-controlled phospholipase D stimulation by the m3 muscarinic acetylcholine receptor. J Biol Chem 274:14648–14654

    PubMed  CAS  Google Scholar 

  • Schmidt M, Hüwe SM, Fasselt B, Homann D, Rümenapp U, Sandmann J, Jakobs KH (1994) Mechanisms of phospholipase D stimulation by m3 muscarinic acetylcholine receptors. Evidence for involvement of tyrosine phosphorylation. Eur J Biochem 225:667–675

    PubMed  CAS  Google Scholar 

  • Schürmann A, Schmidt M, Asmus M, Bayer S, Fliegert F, Koling S, Massmann S, Schilf C, Subauste MC, Voss M, Jakobs KH, Joost H-G (1999) The ADP-ribosylation factor (ARF)-related GTPase ARF-related protein binds to the ARF-specific guanine nucleotide exchange factor cytohesin and inhibits the ARF-dependent activation of phospholipase D. J Biol Chem 274:9744–9751

    PubMed  Google Scholar 

  • Sciorra VA, Morris AJ (1999) Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Molec Biol Cell 10:3863–3876

    PubMed  CAS  Google Scholar 

  • Sciorra VA, Hammond SM, Morris AJ (2001) Potent direct inhibition of mammalian phospholipase D isoenzymes by calphostin-c. Biochem 40:2640–2646

    CAS  Google Scholar 

  • Sciorra VA, Rudge SA, Prestwich GD, Frohman MA, Engebrecht JA, Morris AJ (1999) Identification of a phosphoinositide binding motif that mediates activation of mammalian and yeast phospholipase D isoenzymes. EMBO J 20:5911–5921

    Google Scholar 

  • Sebaldt RJ, Adams DO, Uhing RJ (1992) Quantification of contributions of phospholipid precursors to diradylglycerols in stimulated mononuclear phagocytes. Biochem J 284:367–375

    PubMed  CAS  Google Scholar 

  • Sechi AS, Wehland J (2000) The actin cytoskeleton and plasma membrane connection: PtdIns (4,5)P 2 influences cytoskeletal protein activity at the plasma membrane. J Cell Sci 113:3685–3695

    PubMed  CAS  Google Scholar 

  • Senogles SE (2000) The D2 dopamine receptor stimulates phospholipase D activity: A novel signaling pathway for dopamine. Molec Pharmacol 58:455–462

    CAS  Google Scholar 

  • Sergeant S, Waite KA, Heravi J, McPhail LC (2001) Phosphatidic acid regulates tyrosine phosphorylating activity in human neutrophils. Enhancement of Fgr activity. J Biol Chem 276:4737–4746

    PubMed  CAS  Google Scholar 

  • Shen Y, Xu L, Foster DA (2001) Role for phospholipase D in receptor-mediated endocytosis. Molec Cell Biol 21:595–602

    PubMed  CAS  Google Scholar 

  • Shome K, Vasudevan C, Romero G (1997) ARF proteins mediate insulin-dependent activation of phospholipase D. Curr Biol 7:387–396

    PubMed  CAS  Google Scholar 

  • Shome K, Nie Y, Romero G (1998) ADP-ribosylation factor proteins mediate agonist-induced activation of phospholipase D. J Biol Chem 273:30836–30841

    PubMed  CAS  Google Scholar 

  • Shome K, Rizzo MA, Vasudevan C, Andresen B, Romero G (1999) The activation of phospholipase D by endoethelin-1, angiotensin II, and platelet-derived growth factor in vascular smooth muscle A10 cells is mediated by small G proteins of the ADP-ribosylation factor family. Endocrinol 141:2200–2208

    Google Scholar 

  • Siddhanta A, Shields D (1998) Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels. J Biol Chem 273:17995–17998

    PubMed  CAS  Google Scholar 

  • Siddhanta A, Backer JM, Shields D (2000) Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. J Biol Chem 275:12023–12031

    PubMed  CAS  Google Scholar 

  • Siddiqi AR, Srajer GE, Leslie CC (2000) Regulation of human PLD1 and PLD2 by calcium and protein kinase C. Biochim Biophys Acta 1497:103–114

    PubMed  CAS  Google Scholar 

  • Siddiqui RA, Yang Y-C (1995) Interleukin-11 induces phosphatidic acid formation and activates MAP kinase in mouse 3T3-L1 cells. Cell Signal 7:247–259

    PubMed  CAS  Google Scholar 

  • Singer WD, Brown HA, Bokoch GM, Sternweis PC (1995) Resolved phospholipase D activity is modulated by cytosolic factors other than Arf. J Biol Chem 270:14944–14950

    PubMed  CAS  Google Scholar 

  • Singer WD, Brown HA, Jiang X, Sternweis PC (1996) Regulation of phospholipase D by protein kinase C is synergistic with ADP-ribosylation factor and independent of protein kinase activity. J Biol Chem 271:4504–4510

    PubMed  CAS  Google Scholar 

  • Sinnett-Smith J, Zachary I, Valverde AM, Rozengurt E (1993) Bombesin stimulation of p125 focal adhesion kinase tyrosine phosphorylation. Role of protein kinase C, Ca2+ mobilization and the actin cytoskeleton. J Biol Chem 268:14261–14268

    PubMed  CAS  Google Scholar 

  • Slaaby R, Jensen T, Hansen HS, Frohman MA, Seedorf K (1998) PLD2 complexes with the EGF receptor and undergoes tyrosine phosphorylation at a single site upon agonist stimulation. J Biol Chem 273:33722–33727

    PubMed  CAS  Google Scholar 

  • Slaaby R, Du G, Altshuller YM, Frohman MA, Seedorf K (2000) Insulin-induced phospholipase D1 and phospholipase D2 activity in human embryonic kidney-293 cells mediated by the phospholipase Cγ and protein kinase Cα signalling cascade. Biochem J 351:613–619

    PubMed  CAS  Google Scholar 

  • Slater SJ, Seiz JL, Stagliano BA, Cook AC, Milano SK, Ho C, Stubbs CD (2001) Low-and high-affinity phorbol esterand diglyceride interactions with protein kinaseC: 1-O-Alkyl-2-acyl-sn-glycerol enhances phorbol ester-and diacylglycerol-induced activity but alone does not induce activity. Biochem 40:6085–6092

    CAS  Google Scholar 

  • Slivka SR, Meier KE, Insel PA (1988) (1-Adrenergic receptors promote phosphatidylcholine hydrolysis in MDCK-D1 cells. A mechanism for rapid activation of protein kinase C. J Biol Chem 263:12242–12246

    PubMed  CAS  Google Scholar 

  • Smith M, Jungalwala FB (1981) Reversed-phase high performance liquid chromatography of phosphatidylcholine: a simple method for determining relative hydrophobic interaction of various molecular species. J Lipid Res 22:697–704

    PubMed  CAS  Google Scholar 

  • Song J, Pfeffer LM, Foster DA (1991) v-Src increases diacylglycerol levels via a type D phospholipase-mediated hydrolysis of phosphatidylcholine. Mol Cell Biol 11:4903–4908

    PubMed  CAS  Google Scholar 

  • Spiegel S, Foster D, Kolesnick R (1996) Signal transduction through lipid second messengers. Curr Opin Cell Biol 8:159–167

    PubMed  CAS  Google Scholar 

  • Stamnes MA, Rothman JE (1993) The binding of AP-1 clathrin adaptor particles to Golgi membranes requires ADP ribosylation factor, a small GTP-binding protein. Cell 73:999–1005

    PubMed  CAS  Google Scholar 

  • Stamnes M, Schiavo G, Stenbeck G, Sollner TH, Rothman JE (1998) ADP-ribosylation factor and phosphatidic acid levels in Golgi membranes during budding of coatomer-coated vesicles. Proc Natl Acad Sci USA 95:13676–13680

    PubMed  CAS  Google Scholar 

  • Stanacev NZ, Stuhne-Sekalec L (1970) On the mechanisms of enzymatic phosphatidylation. Biosynthesis of cardiolipin catalyzed by phospholipase D. Biochim Biophys Acta 210:350–352

    PubMed  CAS  Google Scholar 

  • Stuckey JA, Dixon JE (1999) Crystal structure of a phospholipase D family member. Nature Struct Biol 6:278–284

    PubMed  CAS  Google Scholar 

  • Stutchfield J, Cockcroft S (1993) Correlation between secretion and phospholipase D activation in differentiated HL60 cells. Biochem J 293:649–655

    PubMed  CAS  Google Scholar 

  • Sugars JM, Cellek S, Manifava M, Coadwell J, Ktistakis NT (1999) Fatty acylation of phospholipase D1 on cysteine residues 240 and 241 determines localization on intracellular membranes. J Biol Chem 274:30023–30027

    PubMed  CAS  Google Scholar 

  • Sung T-C, Roper RL, Zhang Y, Rudge SA, Temel R, Hammond SM, Morris AJ, Moss B, Engebrecht JA, Frohman MA (1997) Mutagenesis of phospholipase D defines a superfamily including a trans-Golgi viral protein required for poxvirus pathogenicity. EMBO J 16:4519–4539

    PubMed  CAS  Google Scholar 

  • Sung T-C, Altshuller YM, Morris AJ, Frohman MA (1999a) Molecular analysis of mammalian phospholipase D2. J Biol Chem 274:494–502

    PubMed  CAS  Google Scholar 

  • Sung T-C, Zhang Y, Morris AJ, Frohman MA (1999b) Structural analysis of human phospholipase D1. J Biol Chem 274:3659–3666

    PubMed  CAS  Google Scholar 

  • Suzuki A, Kozawa O, Shinoda J, Watanabe Y, Saito H, Oiso Y (1996a) Thrombin induces proliferation of osteoblast-like cells through phosphatidylcholine hydrolysis. J Cell Physiol 168:209–216

    PubMed  CAS  Google Scholar 

  • Suzuki A, Shinoda J, Oiso Y, Kozawa O (1996b) Tyrosine kinase is involved in angiotensin II-stimulated phospholipase D activation in aortic smooth muscle cells: Function of Ca2+ influx. Atherosclerosis 121:119–127

    PubMed  CAS  Google Scholar 

  • Takamura H, Narita H, Park HJ, Tanaka K-I, Matsuura T, Kito M (1987) Differential hydrolysis of phospholipid molecular species during activation of human platelets with thrombin and collagen. J Biol Chem 262:2262–2269

    PubMed  CAS  Google Scholar 

  • Tang H, Zhao ZJ, Landon EJ, Inagami T (2000) Regulation of calcium-sensitive tyrosine kinase Pyk2 by angiotensin II in endothelial cells. Roles of Yes tyrosine kinase and tyrosine phosphatase SHP-2. J Biol Chem 275:8389–8396

    PubMed  CAS  Google Scholar 

  • Tapia JA, Ferris HA, Jensen RT, Garcia LJ (1999) Cholecystokinin activates PYK2/CAKβ by a phospholipase C-dependent mechanism and its association with the mitogen-activated protein kinase signaling pathway in pancreatic acinar cells. J Biol Chem 274:31261–31271

    PubMed  CAS  Google Scholar 

  • Thorsen VAT, Bjorndal B, Nolan G, Fukami MH, Bruland O, Lillehaug JR, Holmsen H (2000) Expression of a peptide binding to receptor for activated C-kinase (RACK1) inhibits phorbol myristoyl acetate-stimulated phospholipase D activity in C3H/10T1/2 cells: dissociation of phospholipase D-mediated phosphatidylcholine breakdown from its synthesis. Biochim Biophys Acta 1487:163–176

    PubMed  CAS  Google Scholar 

  • Tomic S, Greiser U, Lammers R, Kharitonenkov A, Imyanitov E, Ullrich A, Böhmer F-D (1995) Association of SH2 domain protein tyrosine phosphatases with the epidermal growth factor receptor in human tumor cells. Phosphatidic acid activates receptor dephosphorylation by PTP1C. J Biol Chem 270:21277–21284

    PubMed  CAS  Google Scholar 

  • Tool ATJ, Blom M, Roos D, Verhoeven AJ (1999) Phospholipase D-derived phosphatidic acid is involved in the activation of the CD11b/CD18 integrin in human eosinophils. Biochem J 340:95–101

    PubMed  CAS  Google Scholar 

  • Traub LM, Ostrom JA, Kornfeld S (1993) Biochemical dissection of AP-1 recruitment onto Golgi membranes. J Cell Biol 135:1801–1814

    Google Scholar 

  • Tronchère H, Planat V, Record M, Tercé F, Ribbes G, Chap H (1995) Phosphatidylcholine turnover in activated human neutrophils. Agonist-induced cytidyltransferase translocation is subsequent to phospholipase D activation. J Biol Chem 270: 13138–13146

    PubMed  Google Scholar 

  • Tsai M-M, Yu C-L, Wie F-S, Staacey DW (1989) The effect of GTPase activating protein upon Ras is inhibited by mitogenically responsive lipids. Science Wash. DC 243:522–526

    CAS  Google Scholar 

  • Tsai S-C, Adamik R, Hong J-X, Moss J, Vaughan M, Kanoh H, Exton JH (1998) Effects of arfaptin 1 on guanine nucleotide-dependent activation of phospholipase D and cholera toxin by ADP-ribosylation factor. J Biol Chem 273:20697–20701

    PubMed  CAS  Google Scholar 

  • Tüscher O, Lorra C, Bouma B, Wirtz KWAA, Huttner WB (1997) Cooperativity of phosphatidyliositol transfer protein and phospholipase D in secretory vesicle formation from the TGN—phosphoinositides as a common denominator? FEBS Lett 419:271–275

    PubMed  Google Scholar 

  • Uings IJ, Thompson NT, Randall RW, Spacey GD, Bonser RW, Hudson, Garland LG (1992) Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutrophil. Biochem J 281:597–600

    PubMed  CAS  Google Scholar 

  • van Blitterswijk WJ, Hilkmann H, de Widt J, van der Bend RL (1991a) Phospholipid metabolism in bradykinin-stimulated human fibroblasts. I. Biphasic formation of diacylglycerol from phosphatidylinositol and phosphatidylcholine, controlled by protein kinase C. J Biol Chem 266:10337–19343

    PubMed  Google Scholar 

  • van Blitterswijk WJ, Hilmann H, de Widt J, van der Bend RL (1991b) Phospholipid metabolism in bradykinin-stimulated human fibroblasts. II. Phosphatidylcholine breakdown by phospholipases C and D; involvement of protein kinase C. J Biol Chem 266:10344–10350

    PubMed  Google Scholar 

  • van Dijk MCM, Postma F, Hilkmann H, Jalink K, van Blitterswijk WJ, Moolenaar WH (1998) Exogenous phospholipase D generates lysophosphatidic acid and activates Ras, Rho and Ca2+ signaling pathways. Curr Biol 8:386–392

    PubMed  Google Scholar 

  • Venable ME, Blobe GC, Obeid LM (1994) Identification of a defect in the phospholipase D/diacylglycerol pathway in cellular senescence. J Biol Chem 269:26040–26044

    PubMed  CAS  Google Scholar 

  • Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089

    PubMed  CAS  Google Scholar 

  • Vitale N, Caumont A-S, Chasserot-Golaz S, Du G, Wu S, Sciorra VA, Morris AJ, Frohman MA, Bader M-F (2001) Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBO J 20:2424–2434

    PubMed  CAS  Google Scholar 

  • von Eichel-Streiber C, Boquet P, Sauerborn M, Thelestam M (1996) Large clostridial cytotoxinsa family of glycosyltransferases modifying small GTP-binding proteins. Trends Microbiol 4:375–382

    Google Scholar 

  • Voss M, Oude Oude Weernink PA, Haupenthal S, Moller U, Cool RH, Bauer B, Camonis JH, Jakobs KH, Schmidt M (2000) Phospholipase D stimulation by receptor tyrosine kinases mediated by protein kinase C and a Ras/Ral signaling cascade. J Biol Chem 274:34691–34698

    Google Scholar 

  • Waite KA, Wallin R, Qualliotine-Mann D, McPhail LC (1997) Phosphatidic acid-mediated phosphorylation of the NADPH oxidase component p47-phox. Evidence that phosphatidic acid may activate a novel protein kinase. J Biol Chem 272:15569–15578

    PubMed  CAS  Google Scholar 

  • Waite M (1999) The PLD superfamily: insights into catalysis. Biochim Biophys Acta 1439:187–197

    PubMed  CAS  Google Scholar 

  • Wakelam MJO (1998) Diacylglycerol—when is it an intracellular messenger? Biochim Biophys Acta 1436:117–126

    PubMed  CAS  Google Scholar 

  • Walker SJ, Wu W-J, Cerione RA, Brown HA (2000) Activation of phospholipase D1 by Cdc42 requires the Rho insert region. J Biol Chem 275:15665–15668

    PubMed  CAS  Google Scholar 

  • Wang S, Banno Y, Nakashima S, Nowawa Y (2001) Enzymatic characterization of phospholipase D of protozoan Tetrahymena Cells. J Eukaryot Microbiol 48:194–201

    PubMed  CAS  Google Scholar 

  • Ward DT, Ohanian J, Heagerty AM, Ohanian V (1995) Phospholipase D-induced phosphatidate production in intact small arteries during noradrenaline stimulation: involvement of both G-protein and tyrosine-phosphorylation-linked pathways. Biochem J 307:451–456.

    PubMed  CAS  Google Scholar 

  • Watanabe H, Kanaho Y (2000) Inhibition of phosphatidylinositol 4,5-bisphosphate-stimulated phospholipase D2 activity by Ser/Thr phosphorylation. Biochim Biophys Acta 1495:121–124

    PubMed  CAS  Google Scholar 

  • Way G, O'Luanaigh N, Cockcroft S (2000) Activation of exocytosis by cross-linking of the IgE receptor is dependent on ADP-ribosylation factor1-regulated phosphosipase D in RBL-2H3 mast cells: evidence that the mechanism of activation is via regulation of phosphatidylinositol 4,5-bisphosphate synthesis. Biochem J 346:63–70

    PubMed  CAS  Google Scholar 

  • Oude Oude Weernink PA, Schulte P, Guo Y, Wetzel J, Amano M, Kaibuchi K, Haverland S, VoB M, Schmidt M, Mayr GW, Jakobs KH (2000) Stimulation of phosphatidylinositol-4-phosphate 5-kinase by Rho-kinase. J Biol Chem 275:10168–10174

    Google Scholar 

  • West MA, Bright NA, Robinson MS (1997) The role of ADP-ribosylation factor and phospholipase D in adaptor recruitment. J Cell Biol 138:1239–1254

    PubMed  CAS  Google Scholar 

  • Whatmore J, Morgan CP, Cunningham E, Collison KS, Willison KR, Cockcroft S (1996) ADP-ribosylation factor 1-regulated phospholipase D activity is localized at the plasma membrane and intracellular organelles in HL60 cell. Biochem J 320:785–794

    PubMed  CAS  Google Scholar 

  • Wilkie N, Morton C, Ng LL, Boarder MR (1996) Stimulated mitogen-activated protein kinase is necessary but not sufficient for the mitogenic response to angiotensin II. A role for phospholipase D. J Biol Chem 271:32447–32453

    PubMed  CAS  Google Scholar 

  • Wilkes LC, Patel V, Purkiss JR, Boarder MR (1993) Endothelin-1 stimulated phospholipase D in A10 vascular smooth muscle derived cells is dependent on tyrosine kinase. FEBS Lett 322:147–150

    PubMed  CAS  Google Scholar 

  • Williger B-T, Provost JJ, Ho W-T, Milstine J, Exton JH (1999) Arfaptin 1 forms a complex with ADP-ribosylation factor and inhibits phospholipase D. FEBS Lett 454:85–89

    PubMed  CAS  Google Scholar 

  • Williger B-T, Ho W-T, Exton JH (1999) Phospholipase D mediates matrix metaloproteinase-9 secretion in phorbol ester-stimulated human fibrosarcoma cells. J Biol Chem 274:735–738

    PubMed  CAS  Google Scholar 

  • Williger B-T, Ostermann J, Exton JH (1999) Arfaptin 1, an ARF-binding protein, inhibits phospholipase D and endoplasmic reticulum/Golgi protein transport. FEBS Lett 443:197–200

    PubMed  CAS  Google Scholar 

  • Wright TM, Rangan LA, Shin HS, Raben DM (1988) Kinetic analysis of 1,2-diacylglycerol mass levels in cultured fibroblasts. Comparison of stimulation by α-thrombin and epidermal growth factor. J Biol Chem 263:9374–9380

    PubMed  CAS  Google Scholar 

  • Xie Z, Ho W-T, Exton JH (1998) Association of N-and C-terminal domains of phospholipase D is required for catalytic activity. J Biol Chem 273:34679–34682

    PubMed  CAS  Google Scholar 

  • Xie Z, Ho W-T, Exton JH (2000a) Association of the N-and C-terminal domains of phospholipase D. Contribution of the conserved HKD motifs to the interaction and the requirement of the association for Ser/Thr phosphorylation of the enzyme. J Biol Chem 275:24962–24969

    PubMed  CAS  Google Scholar 

  • Xie Z, Ho W-T, Exton JH (2000b) Conserved amino acids at the C-terminus of rat phospholipase D1 are essential for enzymatic activity. Eur J Biochem 267:7138–7146

    PubMed  CAS  Google Scholar 

  • Xie Z, Ho W-T, Exton JH (2001) Requirements and effects of palmitoylation of rat PLD1. J Biol Chem 275:24962–24969

    Google Scholar 

  • Yamazaki M, Zhang Y, Watanabe H, Yokozeki T, Ohno S, Kaibuchi K, Shibata H, Mukai H, Ono Y, Frohman MA, Kanaho Y (1999) Interaction of the small G protein RhoA with the C terminus of human phospholipase D1. J Biol Chem 274:6035–6038

    PubMed  CAS  Google Scholar 

  • Yang SF, Freer S, Benson AA (1967) Transphosphatidylation by phospholipase D. J Biol Chem 242:477–484

    PubMed  CAS  Google Scholar 

  • Yeo E-J, Kazlauskas A, Exton JH (1994) Activation of phospholipase C-γ is necessary for stimulation of phospholipase D by platelet-derived growth factor. J Biol Chem 269:27823–7826

    PubMed  CAS  Google Scholar 

  • Yu H, Li X, Marchetto GS, Dy R, Hunter D, Calvo B, Dawson TL, Wilm M, Anderegg RJ, Graves LM, Earp HS (1996) Activation of a novel calcium-dependent proteintyrosine kinase. Correlation with c-Jun N-terminal kinase but not mitogen-activated protein kinase activation. J Biol Chem 271:29993–29996

    PubMed  CAS  Google Scholar 

  • Yuli I, Tomonaga A, Snyderman R (1982) Chemoattractant receptor functions in human polyorphonuclear leukocytes are divergently altered by membrane fluidizers. Proc Natl Acad Sci USA 79:5906–5910

    PubMed  CAS  Google Scholar 

  • Zhang G-F, Patton WA, Lee F-JL, Liyanage M, Han J-S, Rhee SG, Moss J, Vaughan M (1995) Different ARF domains are required for the activation of cholera toxin and phospholipase D. J Biol Chem 270:21–24

    PubMed  CAS  Google Scholar 

  • Zhang H, Desai NN, Murphey JM, Spiegel S (1990) Increases in phosphatidic acid levels accompany sphingosine-stimulated proliferation of quiescent Swiss 3T3 cells. J Biol Chem 265:21309–21316

    PubMed  CAS  Google Scholar 

  • Zhang Y, Altshuller YM, Hammond SM, Morris AJ, Frohman MA (1999) Loss of receptor regulation by a phospholipase D1 mutant unresponsive to protein kinase C. EMBO J 18:6339–6348

    PubMed  CAS  Google Scholar 

  • Zhao Z, Shen S-H, Fischer EH (1993) Stimulation by phospholipids of a protein-tyrosine-phosphatase containing two src homology 2 domains. Proc Natl Acad Sci USA 90:4251–4255

    PubMed  CAS  Google Scholar 

  • Zwick E, Wallasch C, Daub H, Ullrich A (1999) Distinct calcium-dependent pathways of epidermal growth factor receptor transactivation and PYK2 tyrosine phosphorylation in PC12 cells. J Biol Chem 274:20989–20996

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag

About this chapter

Cite this chapter

Exton, J.H. (2002). Phospholipase D—Structure, regulation and function. In: Reviews of Physiology, Biochemistry and Pharmacology. Reviews of Physiology, Biochemistry and Pharmacology, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0116585

Download citation

  • DOI: https://doi.org/10.1007/BFb0116585

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42814-5

  • Online ISBN: 978-3-540-45534-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics