Skip to main content

Cholera toxin: mechanisms of entry into host cells

  • Chapter
  • First Online:
Microbial Protein Toxins

Part of the book series: Topics in Current Genetics ((TCG,volume 11))

Abstract

Cholera toxin moves from the plasma membrane to the ER of host cells to cause disease. Trafficking in this pathway depends on toxin binding to specific ceramide-based glycolipids that associate with lipid rafts at the cell surface. In the ER, a portion of the toxin is unfolded, dissociated from the rest of the toxin and retro-translocated to the cytosol where it activates adenylyl cyclase to initiate the severe secretory diarrhea seen in cholera.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. Anderson RG, Jacobson K (2002) A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296:1821-1825

    Article  CAS  PubMed  Google Scholar 

  • 2. Bastiaens PIH, Majoul IV, Verveer PJ, Söling H-D, Jovin TM (1996) Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin. EMBO J 15:4246-4253

    CAS  PubMed  Google Scholar 

  • 3. Brown D, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275:17221-17224

    Article  CAS  PubMed  Google Scholar 

  • 4. Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257-283

    Article  CAS  PubMed  Google Scholar 

  • 5. Feng Y, Jadhav AP, Rodigherio C, Fujinaga Y, Kirchhausen T, Lencer WI (2004) Retrograde transport of cholera toxin from the plasma membrane to the ER requires the TGN but not the Golgi apparatus in Exo2 treated cells. EMBO Rep 5:596-601

    Article  CAS  PubMed  Google Scholar 

  • 6. Fivaz M, Vilbois F, Thurnheer S, Pasquali C, Abrami L, Bickel PE, Parton RG, van der Goot FG (2002) Differential sorting and fate of endocytosed GPI-anchored proteins. EMBO J 21:3989-4000

    Article  CAS  PubMed  Google Scholar 

  • 7. Fujinaga Y, Wolf AA, Rodigherio C, Wheeler H, Tsai B, Allen L, Jobling MG, Rapoport T, Holmes RK, Lencer WI (2003) Gangliosides that associate with lipid rafts mediate transport of cholera toxin from the plasma membrane to the ER. Mol Biol Cell 14:4783-4793

    Article  CAS  PubMed  Google Scholar 

  • 8. Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L, Jessup W (2003) Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA 100:15554-15559

    Article  CAS  PubMed  Google Scholar 

  • 9. Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R (1999) Evidence for COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1:423-430

    Article  CAS  PubMed  Google Scholar 

  • 10. Hazes B, Read RJ (1997) Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 36:11051-11054

    Article  CAS  PubMed  Google Scholar 

  • 11. Kahn RA, Fu H, Roy CR (2002) Cellular hijacking: a common strategy for microbial infection. Trends Biochem Sci 27:308-314

    Article  CAS  PubMed  Google Scholar 

  • 12. Lencer WI, Constable C, Moe S, Jobling M, Webb HM, Ruston S, Madara JL, Hirst T, Holmes R (1995) Targeting of cholera toxin and E. coli heat labile toxin in polarized epithelia: role of C-terminal KDEL. J Cell Biol 131:951-962

    Article  CAS  PubMed  Google Scholar 

  • 13. Majoul I, Sohn K, Wieland FT, Pepperkok R, Pizza M, Hillemann J, Söling H-D (1998) KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from Golgi involves COPI, p23, and the COOH terminus of Erd2p. J Cell Biol 143:601-612

    Article  CAS  PubMed  Google Scholar 

  • 14. Majoul I, Straub M, Hell SW, Duden R, Söling HD (2001) KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev Cell 1:139-153

    Article  CAS  PubMed  Google Scholar 

  • 15. Majoul IV, Bastiaens PIH, Söling H-D (1996) Transport of an external Lys-Asp-Glu-Leu (KDEL) protein from the plasma membrane to the endoplasmic reticulum: studies with cholera toxin in Vero cells. J Cell Biol 133:777-789

    Article  CAS  PubMed  Google Scholar 

  • 16. Massol RH, Larsen JE, Fujinaga Y, Lencer WI, Kirchhausen T (2004) Cholera Toxin toxicity does not require functional Arf6- and dynamin-dependent endocytic pathways. Mol Biol Cell in press

    Google Scholar 

  • 17. Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G (2000) A complex of mammalian Ufd1 and Npl4 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 19:2181-2192

    Article  CAS  PubMed  Google Scholar 

  • 18. Meyer HH, Wang Y, Warren G (2002) Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4. EMBO J 21:5645-5652

    Article  CAS  PubMed  Google Scholar 

  • 19. Mukherjee S, Soe TT, Maxfield FR (1999) Endocytic sorting of lipid analogues differing solely in the chemistry of their hydrophobic tails. J Cell Biol 144: 1271-1284

    Article  CAS  PubMed  Google Scholar 

  • 20. Nichols BJ (2002) A distinct class of endosome mediates clathrin-independent endocytosis to the Golgi complex. Nat Cell Biol 4:374-378

    CAS  PubMed  Google Scholar 

  • 21. Nichols BJ, Kenworthy AK, Polishchuk RS, Lodge R, Roberts TH, Hirschberg K, Phair RD, Lippincott-Schwartz J (2001) Rapid cycling of lipid raft markers between the cell surface and Golgi complex. J Cell Biol 153:529-541

    Article  CAS  PubMed  Google Scholar 

  • 22. Orlandi PA, Fishman PH (1998) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141:905-915

    Article  CAS  PubMed  Google Scholar 

  • 23. Parton RG (1994) Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae. J Histo Chem Cytochem 42:155-166

    CAS  Google Scholar 

  • 24. Pelkmans L, Kartenbeck J, Helenius A (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473-483

    Article  CAS  PubMed  Google Scholar 

  • 25. Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 292:535-539

    Article  Google Scholar 

  • 26. Richards AA, Stang E, Pepperkok R, Parton RG (2002) Inhibitors of COP-mediated Transport and Cholera Toxin Action Inhibit Simian Virus 40 Infection. Mol Biol Cell 13:1750-1764

    Article  CAS  PubMed  Google Scholar 

  • 27. Rodighiero C, Tsai B, Rapoport TA, Lencer WI (2002) Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 3:1222-1227

    Article  CAS  PubMed  Google Scholar 

  • 28. Sabharanjak S, Sharma P, Parton RG, Mayor S (2002) GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev Cell 2:411-423

    Article  CAS  PubMed  Google Scholar 

  • 29. Sandvig K, van Deurs B (2002) Membrane traffic exploited by protein toxins. Annu Rev Cell Dev Biol 18:1-24

    Article  CAS  PubMed  Google Scholar 

  • 30. Schmitz A, Herrgen H, Winkeler A, Herzog V (2000) Cholera toxin is exported from microsomes by the Sec61p complex. J Cell Biol 148:1203-1212

    Article  CAS  PubMed  Google Scholar 

  • 31. Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M, Mayor S (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116:577-589

    Article  CAS  PubMed  Google Scholar 

  • 32. Shogomori H, Futerman AH (2001a) Cholera toxin is found in detergent-insoluble rafts/domains at the cell surface of hippocampal neurons but is internalized via a raft- independent mechanism. J Biol Chem 276:9182-9188.

    Article  CAS  PubMed  Google Scholar 

  • 33. Shogomori H, Futerman AH (2001b) Cholesterol depletion by methyl-beta-cyclodextrin blocks cholera toxin transport from endosomes to the Golgi apparatus in hippocampal neurons. J Neurochem 78:991-999

    Article  CAS  PubMed  Google Scholar 

  • 34. Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597-603

    Article  CAS  PubMed  Google Scholar 

  • 35. Singh RD, Puri V, Valiyaveettil JT, Marks DL, Bittman R, Pagano RE (2003) Selective caveolin-1-dependent endocytosis of glycosphingolipids. Mol Biol Cell 14:3254-3265

    Article  CAS  PubMed  Google Scholar 

  • 36. Sixma TK, Kalk KH, van Zanten BA, Dauter Z, Kingma J, Witholt B, Hol WG (1993) Refined structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 230:890-918

    Article  CAS  PubMed  Google Scholar 

  • 37. Smart EJ, Ying Y, Donzell WC, Anderson RG (1996) A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J Biol Chem 271:29427-29435

    Article  CAS  PubMed  Google Scholar 

  • 38. Spangler BD (1992) Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microb Rev 56:622-647

    CAS  Google Scholar 

  • 39. Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22:4346-4355

    Article  CAS  PubMed  Google Scholar 

  • 40. Tsai B, Rapoport T (2002a) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Cell Biol 3:246-255

    Article  CAS  Google Scholar 

  • 41. Tsai B, Rapoport T (2002b) Unfolded cholera toxin is transferred to the ER membrane and released from protein disulfide isomerase upon oxidation by Ero1. J Cell Biol 159:207-215

    Article  CAS  PubMed  Google Scholar 

  • 42. Tsai B, Rodighiero C, Lencer WI, Rapoport T (2001) Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell 104:937-948

    Article  CAS  PubMed  Google Scholar 

  • 43. Winkeler A, Godderz D, Herzog V, Schmitz A (2003) BiP-dependent export of cholera toxin from endoplasmic reticulum-derived microsomes. FEBS Lett 554:439-442

    Article  CAS  PubMed  Google Scholar 

  • 44. Wolf AA, Fujinaga Y, Lencer WI (2002) Uncoupling of the cholera toxin-G(M1) ganglioside receptor complex from endocytosis, retrograde Golgi trafficking, and downstream signal transduction by depletion of membrane cholesterol. J Biol Chem 277:16249-16256

    Article  CAS  PubMed  Google Scholar 

  • 45. Wolf AA, Jobling MG, Wimer-Mackin S, Madara JL, Holmes RK, Lencer WI (1998) Ganglioside structure dictates signal transduction by cholera toxin in polarized epithelia and association with caveolae-like membrane domains. J Cell Biol 141:917-927

    Article  CAS  PubMed  Google Scholar 

  • 46. Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652-656

    Article  CAS  PubMed  Google Scholar 

  • 47. Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162:71-84

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Manfred J. Schmitt Raffael Schaffrath

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Saslowsky, D.E., Kothe, M., Lencer, W.I. Cholera toxin: mechanisms of entry into host cells. In: Schmitt, M.J., Schaffrath, R. (eds) Microbial Protein Toxins. Topics in Current Genetics, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b100318

Download citation

Publish with us

Policies and ethics