Skip to main content

STABILITY

  • Chapter
  • First Online:
Case Studies in Superconducting Magnets
  • 2435 Accesses

In this chapter we shall consider: 1) basic physics controlling temperature in a superconducting winding; and 2) stability evaluation methods to quantify the likelihood of an unscheduled temperature rise within the winding. CHAPTERS 7 and 8 also deal with temperature rise in the winding under different contexts: CHAPTER 7 on causes or sources of temperature rises; and CHAPTER 8 on methods to protect magnets subsequent to unscheduled temperature rises. First, there is a striking difference in this stability issue between LTS and HTS magnets

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.W. Collings, “Design considerations for high T c ceramic superconductors,” Cryogenics 28, 724 (1988).

    Article  Google Scholar 

  2. Y. Iwasa, “Design and operational issues for 77-K superconducting magnets,” IEEE Trans. Mag. MAG-24, 1211 (1988).

    Article  Google Scholar 

  3. L. Ogasawara, “Conductor design issues for oxide superconductors Part I: criteria of magnetic stability,” Cryogenics 29, 3 (1989).

    Article  Google Scholar 

  4. L. Dresner, “Stability and protection of Ag/BSCCO magnets operated in the 20–40 K range,” Cryogenics 33, 900 (1993).

    Article  Google Scholar 

  5. L.Y. Xiao, S. Han, L.Z. Lin, and H.M. Wen, “Stability study on composite conductors for HTSC superconducting magnets,” Cryogenics 34, 785 (1994).

    Article  Google Scholar 

  6. J.W. Lue, L. Dresner, S.W. Schwenterly, D. Aized, J.M. Campbell, and R.E. Schwall, “Stability measurements on a 1-T high temperature superconducting magnet,” IEEE Appl. Superconduc. 5, 230 (1995).

    Article  Google Scholar 

  7. Yu.A. Ilyin, V.S. Vysotsky, T. Kiss, M. Takeo, H. Okamoto and F. Irie, “Stability and quench development study in small HTS magnet,” Cryogenics 41, 665 (2001).

    Article  Google Scholar 

  8. T. Obana, K. Tasaki, T. Kuriyama, and T. Okamura, “Thermal stability analysis of conduction-cooled HTS coil,” Cryogenics 43, 603 (2003).

    Article  Google Scholar 

  9. A.R. Kantrowitz and Z.J.J. Stekly, “A new principle for the construction of stabilized superconducting coils,” Appl. Phys. Lett. 6, 56 (1965). Also see, Z.J.J. Stekly, R. Thome, and B. Strauss, “Principles of stability in cooled superconducting magnets,” J. Appl. Phys. 40, 2238 (1969).

    Article  Google Scholar 

  10. J. Wong, D.F. Fairbanks, R.N. Randall, and W.L. Larson, “Fully stabilized superconducting strip for the Argonne and Brookhaven bubble chambers,” J. Appl. Phys. 39, 2518 (1968).

    Article  Google Scholar 

  11. G. Bogner, C. Albrecht, R. Maier, and P. Parsch, “Experiments on copper- and aluminum-stabilized Nb-Ti superconductors in view of their application in large magnets,” Proc. 2 nd Int'l Cryo. Eng. Conf. (Iliffe Science and Technology Publication, Surrey, 1968), 175.

    Google Scholar 

  12. J.R. Purcell, “The 1.8 tesla, 4.8 m i.d. bubble chamber magnet,” Proc. 1968 Summer Study on Superconducting Devices and Accelerators (Brookhaven National Laboratory, Upton New York, 1969), 765.

    Google Scholar 

  13. A.P. Martinelli and S.L. Wipf, “Investigation of cryogenic stability and reliability of operation of Nb3Sn coils in helium gas environment,” Proc. Appl. Superconduc. Conf. (IEEE Pub. 72CHO682-5-TABSC), 331 (1977).

    Google Scholar 

  14. L. Bottura [Private communication, 2004].

    Google Scholar 

  15. B.J. Maddock, G.B. James, and W.T. Norris, “Superconductive composites: heat transfer and steady state stabilization,” Cryogenics 9, 261 (1969).

    Article  Google Scholar 

  16. M.N. Wilson and Y. Iwasa, “Stability of superconductors against localized disturbances of limited magnitude,” Cryogenics 18, 17 (1978).

    Article  Google Scholar 

  17. J.E.C. Williams, E.S. Bobrov, Y. Iwasa, W.F.B. Punchard, J. Wrenn, A. Zhukovsky, “NMR magnet technology at MIT,” IEEE Trans. Magn. 28, 627 (1992).

    Article  Google Scholar 

  18. Y. Iwasa and V.Y. Adzovie, “The index number (n) below ‘critical’ current in Nb-Ti superconductors,” IEEE Trans. Appl. Superconduc. 5, 3437 (1995).

    Article  Google Scholar 

  19. K. Yamafuji and T. Kiss, “Current-voltage characteristics near the glass-liquid transition in high-T c superconductors,” Physica C 290, 9 (1997).

    Article  Google Scholar 

  20. Kohei Higashikawa, Taketsune Nakamura, Koji Shikimachi, Naoki Hirano, Shigeo Nagaya, Takenobu Kiss, and Masayoshi Inoue, “Conceptual design of HTS coil for SMES using YBCO coated conductor,” IEEE Trans. Appl. Superconduc. 17, 1990 (2007).

    Article  Google Scholar 

  21. Mitchell O. Hoenig and D. Bruce Montgomery, “Dense supercritical-helium cooled superconductors for large high field stabilized magnets,” IEEE Trans. Magn. MAG-11, 569 (1975).

    Article  Google Scholar 

  22. M. Morpurgo, “A large superconducting dipole cooled by forced circulation of two phase helium,” Cryogenics 19, 411 (1979).

    Article  Google Scholar 

  23. P.J. Giarratano, V.D. Arp and R.V. Smith, “Forced convection heat transfer to supercritical helium,” Cryogenics 11, 385 (1971).

    Article  Google Scholar 

  24. Y. Iwasa, M.O. Hoenig, and D.B. Montgomery, “Cryostability of a small superconducting coil wound with cabled hollow conductor,” IEEE Trans. Magn. MAG-13, 678 (1977).

    Article  Google Scholar 

  25. J.W. Lue, J.R. Miller, and L. Dresner, “Stability of cable-in-conduit superconductors,” J. Appl. Phys. 51, 772 (1980).

    Article  Google Scholar 

  26. L. Bottura, “Stability, protection and ac loss of cable-in-conduit conductors – a designer's approach,” Fusion Eng. and Design 20, 351 (1993).

    Article  Google Scholar 

  27. J.V. Minervini, M.M. Steeves, and M.O. Hoenig, “Calorimetric measurement of AC loss in ICCS conductors subjected to pulsed magnetic fields,” IEEE Trans. Magn. MAG-23, 1363 (1980).

    Google Scholar 

  28. T. Ando, K. Okuno, H. Nakajima, K. Yoshida, T. Hiyama, H. Tsuji, Y. Takahashi, M. Nishi, E. Tada, K. Koizumi, T. Kato, M. Sugimoto, T. Isono, K. Kawano, M. Konno, J. Yoshida, H. Ishida, E. Kawagoe, Y. Kamiyauchi, Y. Matsuzaki, H. Shirakata, S. Shimamoto, “Experimental results of the Nb3Sn demo poloidal coil (DPC-EX),” IEEE Trans. Magn. 27 2060 (1991).

    Article  Google Scholar 

  29. G.B.J. Mulder, H.H.J. ten Kate, A. Nijhuis and L.J.M. van de Klundert, “A new test setup to measure the AC losses of the conductors for NET,” IEEE Trans. Magn. 27, 2190 (1991).

    Article  Google Scholar 

  30. R. Bruzzese, S. Chiarelli, P. Gislon, M. Spadoni, S. Zannella, “Critical currents and AC losses on subsize cables of the NET-EM/LMI 40-kA Nb3Sn cable-in-conduit conductor prototype,” IEEE Trans. Magn. 27, 2198 (1991).

    Article  Google Scholar 

  31. D. Ciazynski, J.L. Duchateau, B. Turck, “Theoretical and experimental approach to AC losses in a 40 kA cable for NET,” IEEE Trans. Magn. 27, 2194 (1991).

    Article  Google Scholar 

  32. P. Bruzzone, L. Bottura, J. Eikelboom, A.J.M. Roovers, “Critical currents and AC losses on subsize cables of the NET-EM/LMI 40-kA Nb3Sn cable-in-conduit conductor prototype,” IEEE Trans. Magn. 27, 2198 (1991).

    Article  Google Scholar 

  33. S.A. Egorov, A. Yu. Koretskij and E.R. Zapretilina, “Interstrand coupling AC losses in multistage cable-in-conduit superconductors,” Cryogenics 32, 439 (1992).

    Article  Google Scholar 

  34. Naoyuki Amemiya, Takayuki Kikuchi, Tadayoshi Hanafusa and Osami Tsukamoto, “Stability and AC loss of superconducting cables—Analysis of current imbalance and inter-strand coupling losses,” Cryogenics 34, 559 (1994).

    Article  Google Scholar 

  35. B.J.P. Baudouy, K. Bartholomew, J. Miller, S.W. Van Sciver, “AC loss measurement of the 45-T hybrid/CIC conductor,” IEEE Trans. Appl. Superconduc. 5, 668 (1995).

    Article  Google Scholar 

  36. B. Blau, I. Rohleder, G. Vecsey, “AC behaviour of full size, fusion dedicated cable-in-conduit conductors in SULTAN III under applied pulsed field,” IEEE Trans. Appl. Superconduc. 5, 697 (1995).

    Article  Google Scholar 

  37. Arend Nijhuis, Herman H.J. ten Kate, Pierluigi Bruzzone and Luca Bottura, “First results of a parametric study on coupling loss in subsize NET/ITER Nb3Sn cabled specimen,” IEEE Trans. Appl. Superconduc. 5, 992 (1995).

    Article  Google Scholar 

  38. M. Ono, S. Hanawa, Y. Wachi, T. Hamajima, M. Yamaguchi, “Influence of coupling current among superconducting strands on stability of cable-in-conduit conductor,” IEEE Trans. Magn. 32, 2842 (1996).

    Article  Google Scholar 

  39. K. Kwasnitza, St. Clerc, “Coupling current loss reduction in cable-in-conduit superconductors by thick chromium oxide coating,” Cryogenics 38, 305 (1998).

    Article  Google Scholar 

  40. Toshiyuki Mito, Kazuya Takahata, Akifumi Iwamoto, Ryuji Maekawa, Nagato Yanagi, Takashi Satow, Osamu Motojima, Junya Yamamoto, Fumio Sumiyoshi, Shuma Kawabata and Naoki Hirano, “Extra AC losses for a CICC coil due to the non-uniform current distribution in the cable,” Cryogenics 38, 551 (1998)., EXSIV Group

    Article  Google Scholar 

  41. P.D. Weng, Y.F. Bi, Z.M. Chen, B.Z. Li and J. Fang, “HT-7U TF and PF conductor design,” Cryogenics 40, 531 (2000).

    Article  Google Scholar 

  42. Soren Prestemon, Stacy Sayre, Cesar Luongo and John Miller, “Quench simulation of a CICC model coil subjected to longitudinal and transverse field pulses,” Cryogenics 40, 511 (2000).

    Article  Google Scholar 

  43. Kazutaka Seo, Katuhiko Fukuhara and Mitsuru Hasegawa, “Analyses for interstrand coupling loss in multi-strand superconducting cable with distributed resistance between strands,” Cryogenics 41, 511 (2001).

    Article  Google Scholar 

  44. Yoshikazu Takahashi, Kunihiro Matsui, Kenji Nishi, Norikiyo Koizumi, Yoshihiko Nunoya, Takaaki Isono, Toshinari Ando, Hiroshi Tsuji, Satoru Murase, and Susumu Shimamoto, “AC loss measurement of 46 kA-13 T Nb3Sn conductor for ITER,” IEEE Trans. Appl. Superconduc. 11, 1546 (2001).

    Article  Google Scholar 

  45. Qiuliang Wang, Cheon Seong Yoon, Sungkeun Baang, Myungkyu Kim, Hyunki Park, Yongjin Kim, Sangil Lee and Keeman Kim, “AC losses and heat removal in three-dimensional winding pack of Samsung superconducting test facility under pulsed magnetic field operation,” Cryogenics 41, 253 (2001).

    Article  Google Scholar 

  46. S. Egorov, I. Rodin, A. Lancetov, A. Bursikov, M. Astrov, S. Fedotova, Ch. Weber, J. Kaugerts, “AC loss and interstrand resistance measurement for NbTi cable-in-conduit conductor,” IEEE Trans. Appl. Superconduc. 12, 1607 (2002).

    Article  Google Scholar 

  47. A. Nijhuis, Yu. Ilyin, W. Abbas, B. ten Haken and H.H.J. ten Kate, “Change of interstrand contact resistance and coupling loss in various prototype ITER NbTi conductors with transverse loading in the Twente Cryogenic Cable Press up to 40,000 cycles,” Cryogenics 44, 319 (2004).

    Article  Google Scholar 

  48. S. Lee, Y. Chu, W.H. Chung, S.J. Lee, S.M. Choi, S.H. Park, H. Yonekawa, S.H. Baek, J.S. Kim, K.W. Cho, K.R. Park, B.S. Lim, Y.K. Oh, K. Kim, J.S. Bak, and G.S. Lee, “AC loss characteristics of the KSTAR CSMC estimated by pulse test,” IEEE Trans. Appl. Superconduc. 16, 771 (2006).

    Article  Google Scholar 

  49. Y. Yagai, H. Sato, M. Tsuda, T. Hamajima, Y. Nunoya, Y. Takahashi, and K. Okuno, “Irregular loops with long time constants in CIC conductor,” IEEE Trans. Appl. Superconduc. 16, 835 (2006).

    Article  Google Scholar 

  50. P. Bruzzone, B. Stepanov, R. Wesche, A. Portone, E. Salpietro, A. Vostner, and A. della Corte, “Test results of a small size CICC with advanced Nb3Sn strands,” IEEE Trans. Appl. Superconduc. 16, 894 (2006).

    Article  Google Scholar 

  51. R.D. Blaugher, M.A. Janocko, P.W. Eckels, A. Patterson, J. Buttyan and E.J. Sestak, “Experimental test and evaluation of the Nb3Sn joint and header region,” IEEE Trans. Magn. MAG-17, 467 (1981).

    Article  Google Scholar 

  52. M.M. Steeves and M.O. Hoenig, “Lap joint resistance of Nb3Sn cable terminations for the ICCS-HFTF 12 tesla coil program,” IEEE Trans. Magn. MAG-19, 378 (1983).

    Article  Google Scholar 

  53. A. Bonito Oliva, P. Fabbricatore, A. Martin, R. Museich, S. Patrone, R. Penco, N. Valle, “Development and tests of electrical joints and terminations for CICC Nb3Sn, 12 tesla solenoid,” IEEE Trans. Appl. Superconduc. 3, 468 (1993).

    Article  Google Scholar 

  54. D. Ciazynski, B. Bertrand, P. Decool, A. Martinez, L. Bottura, “Results of the European study on conductor joints for ITER coils,” IEEE Trans. Magn. 32, 2332 (1996).

    Article  Google Scholar 

  55. P. Bruzzone, N. Mitchell, D. Ciazynski, Y. Takahashi, B. Smith, M. Zgekamskij, “Design and R&D results of the joints for the ITER conductor,” IEEE Trans. Appl. Superconduc. 7, 461 (1997).

    Article  Google Scholar 

  56. Philip C. Michael, Chen-Yu Gung, Raghavan Jayakumar, and Joseph V. Minervini, “Qualification of joints for the inner module of the ITER CS model coil,” IEEE Trans. Appl. Superconduc. 9, 201 (1999).

    Article  Google Scholar 

  57. M.M. Steves, M. Takayasu, T.A. Painter, M.O. Hoenig, T. Kato, K. Okuno, H. Nakajima, and H. Tsuji, “Test results from the Nb3Sn US-demonstration poloidal coil,” Adv. Cryo. Engr. 37A, 345 (1992).

    Google Scholar 

  58. L. Krempasky and C. Schmidt, “Theory of ‘supercurrents’ and their influence on field quality and stability of superconducting magnets,” J. Appl. Phys. 78 5800 (1995).

    Article  Google Scholar 

  59. S. Jeong, J.H. Schultz, M. Takayasu, V. Vysotsky, P.C. Michael, W. Warnes, and S. Shen, “Ramp-rate limitation experiments using a hybrid superconducting cable,” Cryogenics 36, 623 (1996).

    Article  Google Scholar 

  60. Vitaly S. Vysotsky, Makoto Takayasu, Sangkwon Jeong, Philip C. Michael, Joel H. Schultz, Joseph V. Minervini, “Measurements of current distribution in a 12-strand Nb3Sn cable-in-conduit conductor,” Cryogenics 37, 431 (1997).

    Article  Google Scholar 

  61. N. Amemiya, “Overview of current distribution and re-distribution in superconducting cables and their influence on stability,” Cryogenics 38, 545 (1998).

    Article  Google Scholar 

  62. Sangkwon Jeong, Seokho Kim and Tae Kuk Ko, “Experimental investigation to overcome the ramp-rate limitation of CICC superconducting magnet,” IEEE Trans. Applied Superconduc. 11, 1689 (2001).

    Article  Google Scholar 

  63. Z.J.J. Stekly, “Behavior of superconducting coil subjected to steady local heating within the windings,” J. Appl. Phys. 37, 324 (1966).

    Article  Google Scholar 

  64. A.Vl. Gurevich and R.G Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys. 59, 117 (1987).

    Article  Google Scholar 

  65. Michael J. Superczynski, “Heat pulses required to quench a potted superconducting magnet,” IEEE Trans. Magn. MAG-15, 325 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukikazu Iwasa .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Iwasa, Y. (2009). STABILITY. In: Case Studies in Superconducting Magnets. Springer, Boston, MA. https://doi.org/10.1007/b112047_6

Download citation

  • DOI: https://doi.org/10.1007/b112047_6

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-09799-2

  • Online ISBN: 978-0-387-09800-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics