Skip to main content

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 158))

  • 924 Accesses

Abstract

A historical perspective of the early developments on the theory of impurity levels in semiconductors can be found in the review by Pantelides [47]. The measurement of the IR absorption of p-type silicon at low temperature in the mid-1950s revealed broad features, which could be attributed to the electronic absorption of dopants, and a correlation between the chemical nature of the dopant and the spectra was established [15]. They provided spectroscopic estimations of the ionization energies of the dopant atoms, which were earlier derived from electrical measurements. The results thus derived stimulated theoretical developments aimed at calculating the ionization energies of shallow dopants in silicon and germanium [28], and later of the discrete spectrum [32-34], which demonstrated the significance of the free-carrier effective masses and of the static dielectric constant to explain the experimental results. The generalization of these ideas led to the concept of effective-mass (EM) centres and to the development of effective-mass theory (EMT), which was proved to be successful in predicting the energy of the excited levels of some donors and acceptors in many materials, and the relative intensities of the lines of the spectra of many acceptor or donor centres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Abramov, B.B. Ditkin, N.B. Konyukhova, B.S. Pariiskii, V.I. Ul’yanova, Zh. Vychisl. Mat. Mat. Fiz.20, 1155 [USSR Comput. Maths. Math. Phys.20, 63] (1980)

    Google Scholar 

  2. A. Baldereschi, Phys. Rev. B1, 4673 (1970)

    Article  ADS  Google Scholar 

  3. A. Baldereschi, N. Lipari, Phys. Rev. B8, 2697 (1973)

    Article  ADS  Google Scholar 

  4. A. Baldereschi, N. Lipari, Phys. Rev. B9, 1525 (1974)

    Article  ADS  Google Scholar 

  5. A. Baldereschi, N. Lipari, (1976) in Fumi FG (ed)Proc. 10th Int’l Conf. on the Physics of Semiconductors (Tipografia Marves, Rome, 1976) pp. 595–598

    Google Scholar 

  6. M. Bara, M. Astier, B. Pajot, Can. J. Phys.63, 437 (1985)

    ADS  Google Scholar 

  7. I.L. Beinikhes, Sh.M. Kogan, Sov. Phys. JETP66, 164 (1987)

    Google Scholar 

  8. I.L. Beinikhes, Sh.M. Kogan, A.F. Polupanov, R. Taskinboev, Solid State Commun.53, 1083 (1985)

    Article  ADS  Google Scholar 

  9. I.L. Beinikhes, Sh.M. Kogan, M.G. Novak, A.F. Polupanov, in Shallow Impurities in Semiconductors IV, ed. by G. Davies (Trans Tech, Switzerland, 1991) Mater. Sci. Forum 65–66:259–264

    Google Scholar 

  10. H.A. Bethe, E.E. Salpeter,Quantum Mechanics of One and Two Electron Atoms. (Academic, New York, 1957), p. 265

    MATH  Google Scholar 

  11. N. Binggeli, A. Baldereschi, Solid State Commun.66, 323 (1988)

    Article  ADS  Google Scholar 

  12. P. Blanconnier, J.F. Hogrel, A.M. Jean-Louis, B. Sermage, J. Appl. Phys.52, 6895 (1981)

    Article  ADS  Google Scholar 

  13. J. Broeckx, P. Clauws, J. Vennik, J. Phys. C19, 511 (1986)

    Article  ADS  Google Scholar 

  14. R. Buczko, F. Bassani, Phys. Rev. B45, 5838 (1992)

    Article  ADS  Google Scholar 

  15. E. Burstein, E.E. Bell, J.W. Davisson, M. Lax, J. Phys. Chem.57, 849 (1953)

    Article  Google Scholar 

  16. P. Clauws, J. Broeckx, E. Rotsaert, J. Vennik, Phys. Rev. B38, 12377 (1988)

    Article  ADS  Google Scholar 

  17. R.A. Faulkner, Phys. Rev.184, 713 (1969)

    Article  ADS  Google Scholar 

  18. V. Fiorentini, Phys. Rev. B51, 10161 (1995)

    Article  ADS  Google Scholar 

  19. J. Fontanella, R.L. Johnston, J.H. Colwell, C. Andeen, Appl. Opt.16, 2949 (1977)

    Article  ADS  Google Scholar 

  20. H. Friedrich, M. Chu, Phys. Rev. A28, 1423 (1983)

    Article  ADS  Google Scholar 

  21. E. Gheeraert, N. Casanova, S. Koizumi, T. Teraji, H. Kanda, Diam. Relat. Mater.10, 444 (2001)

    Article  Google Scholar 

  22. V. Heine,Group Theory in Quantum Mechanics (Pergamon Press, Oxford, 1964)

    Google Scholar 

  23. V. Heine, C.H. Henry, Phys. Rev. B11, 3795 (1975)

    Article  ADS  Google Scholar 

  24. I.G. Ivanov, B. Magnusson, E. Janzén, Phys. Rev. B67, 165212 (2003)

    Article  ADS  Google Scholar 

  25. I.G. Ivanov, A. Stelmach, M. Kleverman, E. Janzén, Phys. Rev. B73, 045205 (2006)

    Article  ADS  Google Scholar 

  26. E. Janzén, R. Stedman, G. Grossmann, H.G. Grimmeiss, Phys. Rev. B29, 1907 (1984)

    Article  ADS  Google Scholar 

  27. H. Kim, R. Vogelgesang, A.K. Ramdas, S. Rodriguez, M. Grimsditch, T.R. Anthony, Phys. Rev. Lett.79, 1706 (1997)

    Article  ADS  Google Scholar 

  28. C. Kittel, A.H. Mitchell, Phys. Rev.96, 1488 (1954)

    Article  ADS  Google Scholar 

  29. Sh.M. Kogan, Sov. Phys. Semicond.13, 1131 (1980)

    Google Scholar 

  30. Sh.M. Kogan, A.F. Polupanov, Sov. Phys. JETP53, 201 (1981)

    Google Scholar 

  31. Sh.M. Kogan, R. Taskinboev, Sov. Phys. Semicond.17, 1007 (1983)

    Google Scholar 

  32. W. Kohn, Phys. Rev.98, 1856 (1955)

    Article  ADS  Google Scholar 

  33. W. Kohn, inShallow Impurity States in Silicon and Germanium, ed. by F. Seitz, D. Turnbull. Solid State Physics Advances in Research and Application, vol 5 (Academic Press, New York, 1957), pp. 257–320

    Google Scholar 

  34. W. Kohn, J.M. Luttinger, Phys. Rev.98, 915 (1955)

    Article  ADS  Google Scholar 

  35. G.F. Koster, J.O. Dimmock, R.G. Wheeler, H. Statz,Properties of the Thirty-Two Point Groups. (MIT, Cambridge, MA, 1963)

    Google Scholar 

  36. Yu.A. Kurskii, Phys. Rev. B48, 5148 (1993)

    Article  ADS  Google Scholar 

  37. R.A. Lewis, P. Fisher, N.A. McLean, Aust. J. Phys.47, 329 (1994)

    ADS  Google Scholar 

  38. N. Lipari, A. Baldereschi, M.L.W. Thewalt, Solid State Commun.33, 277 (1980)

    Article  ADS  Google Scholar 

  39. E.V. Loewenstein, D.R. Smith, R.L. Morgan, Appl. Opt.12, 398 (1973)

    Article  ADS  Google Scholar 

  40. K.S. Mendelson, H.S. James, J. Phys. Chem. Solids25, 729 (1964)

    Article  ADS  Google Scholar 

  41. K.S. Mendelson, D.R. Schultz, Phys. Stat. Sol.31, 59 (1969)

    Article  ADS  Google Scholar 

  42. F. Mireles, S.E. Ulloa, Appl. Phys. Lett.74, 248 (1999)

    Article  ADS  Google Scholar 

  43. W.J. Moore, J.A. Freitas, P.J. Lin-Chung, Solid State Commun.93, 389 (1995)

    Article  ADS  Google Scholar 

  44. H. Nara, J. Phys. Soc. Jpn20, 778 (1965)

    Article  ADS  Google Scholar 

  45. H. Nara, J. Phys. Soc. Jpn20, 1097 (1965)

    Article  ADS  Google Scholar 

  46. B. Pajot, I.L. Beinikhes, Sh.M. Kogan, M.G. Novak, A.F. Polupanov, C. Song, Semicond. Sci. Technol.7, 1162 (1992)

    Article  ADS  Google Scholar 

  47. S.T. Pantelides, Rev. Mod. Phys.50, 797 (1978)

    Article  ADS  Google Scholar 

  48. P.J. Price, Phys. Rev.104, 1223 (1956)

    Article  ADS  Google Scholar 

  49. A.K. Ramdas, S. Rodriguez, Rep. Prog. Phys.44, 1297 (1981)

    Article  ADS  Google Scholar 

  50. T. Ruf, M. Cardona, C.S.J. Pickles, T. Sussmann, Phys. Rev. B62, 16578 (2000)

    Article  ADS  Google Scholar 

  51. M. Said, M.A. Kanehisa, M. Balkanski, Y. Saad, Phys. Rev. B35, 687 (1987)

    Article  ADS  Google Scholar 

  52. M. Said, M.A. Kanehisa, Phys. Stat. Sol. B157, 311 (1990)

    Article  ADS  Google Scholar 

  53. D. Schetcher, J. Phys. Chem. Solids23, 237 (1962)

    Article  ADS  Google Scholar 

  54. P.E. Simmonds, R.A. Stradling, J.R. Birch, C.C. Bradley, Phys. Stat. Sol. B64, 195 (1974)

    Article  ADS  Google Scholar 

  55. J. Simola, J. Virtamo, J. Phys. B11, 3309 (1978)

    Article  ADS  Google Scholar 

  56. G.E. Stillman, S.S. Bose, M.H. Kim, B. Lee, T.S. Low, inCharacterization and Properties of Semiconductors, ed. by S. Mahayan. Handbook of Semiconductors, vol 3A (North Holland, Amsterdam, 1994), pp. 783–994

    Google Scholar 

  57. G.E. Stillman, C.M. Wolfe, J.O. Dimmock, inFar-infrared photoconductivity in high purity GaAs, ed. by R.K. Willardson, A.C. Beer. Semiconductors and Semimetals, vol 12 (Academic, New York, 1977), pp. 169–290

    Google Scholar 

  58. A.M. Stoneham,Theory of Defects in Solids. (Oxford, Clarendon, 1975), p. 778

    Google Scholar 

  59. R.A. Street, W. Senske, Phys. Rev. Lett.37, 1292 (1976)

    Article  ADS  Google Scholar 

  60. S. Syed, J.B. Heroux, Y.J. Wang, M.J. Manfra, R.J. Molnar, H.L. Stormer, Appl. Phys. Lett.83, 4553 (2003)

    Article  ADS  Google Scholar 

  61. H.S. Tan, T.G. Castner, Phys. Rev. B23, 3983 (1981)

    Article  ADS  Google Scholar 

  62. W.E. Teft, R.G. Bell, H.V. Romero, Phys. Rev.177, 1194 (1969)

    Article  ADS  Google Scholar 

  63. M.L.W. Thewalt, Solid State Commun.23, 733 (1977)

    Article  ADS  Google Scholar 

  64. R.F. Wallis, H.J. Bowlden, J. Phys. Chem. Solids7, 78 (1958)

    Article  ADS  Google Scholar 

  65. J.P. Walter, M.L. Cohen, Phys. Rev. B2, 1821 (1970)

    Article  ADS  Google Scholar 

  66. S. Zwerdling, K.J. Button, B. Lax, L.M. Roth, Phys. Rev. Lett.4, 173 (1960)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Pajot .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pajot, B. (2009). Effective-Mass Theory and its Use. In: Optical Absorption of Impurities and Defects in SemiconductingCrystals. Springer Series in Solid-State Sciences, vol 158. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b135694_5

Download citation

Publish with us

Policies and ethics