Skip to main content

Antibiotic Use in Finfish Aquaculture: Modes of Action, Environmental Fate, and Microbial Resistance

  • Chapter
  • First Online:
Environmental Effects of Marine Finfish Aquaculture

Part of the book series: Handbook of Environmental Chemistry ((HEC5,volume 5M))

Abstract

Various antibiotics have been used over the past 20 years and continue to be registered for use in finfish aquaculture in the United Kingdom, Norway, Ireland, and Canada. These include β-lactam (Amoxicillin), macrolide (Erythromycin), phenicols (Florfenicol), quinolones (Oxolinic acid, Piromidic acid, Naladixic acid, Flumequine), fluoroquinolone (Sarafloxacin), sulphonamides (potentiated sulphonamides), and tetracyclines (Oxytetracycline). Vaccines have largely replaced antibiotics as a means for controlling bacterial pathogens in cultured finfish but these anti-microbial agents continue to be applied to control disease in both hatcheries and grow-out stock. Bacterial strains resistant to specific antibiotics used in aquaculture have been cultured from mixed microbial communities in sediments after treatments of cultured fish stocks with antibiotics cease. This chapter considers modes of action, factors affecting environmental persistence and ecological aspects of antibiotic resistance of the major antibiotics currently used in finfish aquaculture in Canada and Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stewart JE (1991) ICES Mar Sci Symp 192:206

    Google Scholar 

  2. Stewart JE (1998) Can Tech Rep Fish Aquat Sci 2218

    Google Scholar 

  3. Alderman DJ, Hastings TS (1998) Int J Food Sci Technol 33:139

    CAS  Google Scholar 

  4. Sheppard ME (2000) Bull Aqua Assoc Canada 100-1:13

    Google Scholar 

  5. Coyne R, Smith P, Moriarty C (2001) Mar Environ Health (Marine Institute, Dublin, Ireland) Ser 3:24

    Google Scholar 

  6. Alderman DJ (2002) Bull Eur Assoc Fish Pathol 22:117

    Google Scholar 

  7. Burka JF, Hammel KL, Horsberg TE, Johnsons GR, Rainie DJ, Speares DJ (1997) J Vet Pharmacol Ther 20:333

    Article  CAS  Google Scholar 

  8. Haya K, Burridge LE, Davies IM, Ervik A (2005) A review and assessment of environmental risk of chemicals used for the treatment of sea lice infestations of cultured salmon (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  9. Aoki T (1997) Resistance plasmids and the risk of transfer. In: Bernoth EM, Ellis AE, Midtlyng PJ, Oliver G, Smith P (eds) Furunculosis Multidisciplinary Fish Disease Research. Academic, New York, p 433

    Google Scholar 

  10. Bruun MS, Schmidt AS, Madsen L, Dalsgaard I (2000) Aquaculture 187:201

    Article  CAS  Google Scholar 

  11. Ang CY, Luo W, Hansen EB Jr, Freeman JP, Thompson HC Jr (1996) J AOAC Int 79:389

    CAS  Google Scholar 

  12. Health Canada (2001) http://www.hc-sc.gc.ca/vetdrugs-medsvet/e\_aquaculture.htm

    Google Scholar 

  13. Salmon Health Consortium (2002) http://salmonhealth.ca/therapeutantsapproved.htm

    Google Scholar 

  14. Stoffregen DA, Bowser PR, Babish JG (1996) J Aquat Anim Health 33:1881

    Google Scholar 

  15. Martinsen BT, Horberg TE, Varma KJ, Sams R (1993) Aquaculture 112:1

    Article  CAS  Google Scholar 

  16. Fukui H, Fujihara Y, Kano T (1987) Fish Path 22:201

    CAS  Google Scholar 

  17. Sams RA (1994) Florfenicol: chemistry and metabolism of a novel broad-spectrum antibiotic. In: Proc XVIII World Buiatrics Congress, Bologna, Italy, p 13

    Google Scholar 

  18. Horsberg TE, Marinsen B, Varma K (1994) Aquaculture 122:97

    Article  CAS  Google Scholar 

  19. Pinault LP, Millot LK, Sanders PJ (1997) J Vet Pharmacol Therap 20:297

    Google Scholar 

  20. Hektoen H, Berge JA, Hormazabal V, Yndestad M (1995) Aquaculture 133:175

    Article  CAS  Google Scholar 

  21. Pouliquen H (1994) Oxytetracycline and oxolinic acid in aquaculture. Chromatographic analysis in sea water, sediments, and marine bivalves. Experimental study of the fate in the marine environment. Doctoral Thesis, University of Nantes, p 203

    Google Scholar 

  22. Pouliquen H, Le Bris H (1996) Chemosphere 33:143

    Article  Google Scholar 

  23. Meade JL, English WR, Schwedler TE, Grimes LW (1993) J App Aqua 3:1

    Google Scholar 

  24. Giles JS, Hariharan H, Heaney SB (1991) Aqua Assoc Canada 91:53

    Google Scholar 

  25. Soltani M, Shanker S, Munday BL (1995) J Fish Dis 18:555

    CAS  Google Scholar 

  26. Lui Y-K, Lui C-K (1995) Mem Coll Agric Nat 35:294

    Google Scholar 

  27. Kerry J, Hiney M, Coyne R, Cazabon D, NicGabhaninn S, Smith P (1994) Aquaculture 123:43

    Article  Google Scholar 

  28. Kerry J, Hiney M, Coyne R, NicGabhaninn S, Gilroy D, Cazabon D, Smith P (1995) Aquaculture 131:101

    Article  Google Scholar 

  29. Bjørklund H, Bylund G (1991) Xenobiotica 21:1511

    Google Scholar 

  30. Alderman DJ, Rosenthal H, Smith P, Steward J, Weston D (1994) Chemicals used in mariculture. ICES Working Group Environmental Interaction of Mariculture, International Council for the Exploration of the Sea, Copenhagen, Denmark. ICES Coop Res Report 202, p 100

    Google Scholar 

  31. Samuelsen OB (1994) Environmental impacts of antibacterial agents. In: Ervik A, Hansen PK, Wennevik V (eds) Proc Canada-Norway Workshop on Environmental Impacts of Aquaculture. Havforskningsinstituttet, Fisken og Havet 13, Bergen, Norway, p 17

    Google Scholar 

  32. Weston DP (1996) Environmental considerations in the use of antibacterial drugs in aquaculture. In: DJ Baird, MCM Beveridge, LA Kelly, JF Muir (eds) Aquaculture and Water Resource Management. Blackwell Science, Oxford, p 140

    Google Scholar 

  33. Cromey CJ, Black KD (2005) Modelling the impacts of finfish aquaculture (in this volume). Springer, Berlin Heidelberg New York

    Google Scholar 

  34. Bjørklund H, Bondestam J, Bylund G (1990) Aquaculture 86:359

    Google Scholar 

  35. Capone DG, Weston DP, Miller V, Shoemaker C (1996) Aquaculture 145:55

    Article  CAS  Google Scholar 

  36. Coyne R, Hiney M, O'Connor B, Kerry J, Cazabon D, Smith P (1994) Aquaculture 123:31

    Article  CAS  Google Scholar 

  37. Smith P (1996) Aquaculture 146:157

    CAS  Google Scholar 

  38. Pouliquen H, Le Bris H, Pinault L (1992) Mar Ecol Prog Ser 89:93

    CAS  Google Scholar 

  39. Smith P, Samuelson OB (1996) Aquaculture 144:17

    Article  CAS  Google Scholar 

  40. Samuelsen OB, Torsvik V, Ervik A (1992) Sci Total Environ 114:25

    CAS  Google Scholar 

  41. Bjørklund H, Råbergh CMI, Bylund G (1991) Aquaculture 97:85

    Google Scholar 

  42. Kerry J, Slattery M, Vaughan S, Smith P (1996) Aquaculture 144:103

    Article  CAS  Google Scholar 

  43. Campell DA, Pantazis P, Kelly MS (2001) Aquaculture 202:73

    Google Scholar 

  44. Torsvik VL, Søerheim R, Goksøeyr J (1988) Int Counc Explor Sea CM 1988/F:10, p 9

    Google Scholar 

  45. Samuelsen OB (1989) Aquaculture 83:7

    Article  CAS  Google Scholar 

  46. Pouliquen H, Le Bris H, Pinault L (1993) Aquaculture 112:113

    Article  CAS  Google Scholar 

  47. Holten Lutzhoft H-C, Halling-Sorensen B, Jorgensen SE (1999) Arch Environ Contam Toxicol 36:1

    CAS  Google Scholar 

  48. Stewart JE (1994) Aquaculture in Canada and the research requirements to environmental interactions with finfish culture. In: Ervik A, Kupka-Hansen P, Wennevik V (eds) Proc Canada-Norway Workshop on the Environmental Impacts of Aquaculture, Fisken Havet 13, p 18

    Google Scholar 

  49. Klaver AL, Matthews RA (1994) Aquaculture 123:237

    Article  CAS  Google Scholar 

  50. Ervik A, Thorsen B, Eriksen V, Lunestad BT, Samuelsen OB (1994) Dis Aquat Org 18:45

    CAS  Google Scholar 

  51. Jones OJ (1990) Uptake and depuration of the antibiotics, oxytetracycline and Romet-30 in the Pacific oyster, Crassostrea gigas (Thunberg). M.Sc. Thesis, University of British Columbia, p 221

    Google Scholar 

  52. LeBris H, Pouliquen H, Debernardi J-M, Buchet V, Pinault L (1995) Mar Environ Res 40:587

    Google Scholar 

  53. Cross SF, Gormican SJ, Levings CD (1997) A preliminary examination of oxytetracycline (OTC) from fish farm to fauna adjacent to a small net-pen operation in British Columbia. Pierce RC, Williams D (eds), Dept Fish Oceans Green Plan Toxic Chemicals Program Wrap-up Conference. Can Tech Rep Fish Aquat Sci 2163:68

    Google Scholar 

  54. GESAMP (IMO/FAO/UNESCO-IOC/WMO/WHO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection) (1997) Rep Stud GESAMP No. 65, Rome, p 40

    Google Scholar 

  55. Amábile-Cuevas CF (2003) Am Sci 91:138

    Google Scholar 

  56. Alderman DJ, Smith P (2001) Aquaculture 196:211

    Article  CAS  Google Scholar 

  57. Hansen PK, Lunestad BT, Samuelsen OB (1993) Can J Microbiol 39:1307

    Google Scholar 

  58. Hirvelä-Koski V, Koski P, Niiranen H (1994) Dis Aquat Org 20:191

    Google Scholar 

  59. Miranda CD, Zemelman R (2002) Aquaculture 212:31

    Article  CAS  Google Scholar 

  60. Friars F (2002) Microbial resistance to oxytetracycline in sediments from salmon aquaculture sites in the Western Isles region of the Bay of Fundy. M.Sc. Thesis, Dalhousie University, p 105

    Google Scholar 

  61. Smith P, Pursell L, McCormack F, O'Reilly A, Hiney M (1995) Bull Eur Ass Fish Pathol 15:105

    Google Scholar 

  62. Herwig RP, Gray JP, Weston DP (1997) Aquaculture 149:263

    Article  CAS  Google Scholar 

  63. Husevag B, Lunestad BT, Johannesen P, Enger O, Samuelsen OB (1991) Sci Total Environ 108:275

    Google Scholar 

  64. Hastings T, McKay A (1987) Aquaculture 61:165

    Article  CAS  Google Scholar 

  65. Son R, Rusul G, Sahilah AM, Zainuri A, Salmah I (1997) Lett Appl Microbiol 24:479

    Article  CAS  Google Scholar 

  66. Rhodes G, Huys G, Swings J, McGann P, Hiney M, Smith P, Pickup RW (2000) Appl Environ Microbiol 66:3883

    Article  CAS  Google Scholar 

  67. Furushita M, Shiba T, Maeda T, Yahata M, Kaneoka A, Takahasi Y, Torii K, Hasegawa T, Ohta M (2003) Appl Environ Microbiol 69:5336

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Armstrong .

Editor information

Barry T. Hargrave

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Armstrong, S.M., Hargrave, B.T., Haya, K. Antibiotic Use in Finfish Aquaculture: Modes of Action, Environmental Fate, and Microbial Resistance. In: Hargrave, B.T. (eds) Environmental Effects of Marine Finfish Aquaculture. Handbook of Environmental Chemistry, vol 5M. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b136017

Download citation

Publish with us

Policies and ethics