Skip to main content

Epibiosis

Ecology, Effects and Defences

  • Chapter
  • First Online:
Marine Hard Bottom Communities

Part of the book series: Ecological Studies ((ECOLSTUD,volume 206))

Abstract

Hard substratum for attachment may easily become a limited resource in the marine environment because the density of the medium requires attachment for a stationary life and allows attachment because water transports all the required resources for sessile organisms. As a consequences, also the body surfaces of living organisms may become colonized by epibionts. This typically aquatic life form is described, as well as the consequences of such an association for the partners, and the possible defence mechanisms of the substratum organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araujo Jorge TC, Coutinho CMLM, Aguiar LEV (1992) Sulphate-reducing bacteria associated with biocorrosion—a review. Mem Inst Oswaldo-Cruz 87:329–337

    Article  Google Scholar 

  • Armstrong E, Yan LM, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40

    Article  Google Scholar 

  • Bach CE, Hazlett BA, Rittschof D (2006) Sex-specific differences and the role of predation in the interaction between the hermit crab, Pagurus longicarpus, and its epibiont, Hydractinia symbiolongicarpus. J Exp Mar Biol Ecol 333:181–189

    Article  Google Scholar 

  • Barnes DKA, Clarke A (1995) Epibiotic communities on sublittoral macroinvertebrates at Signy Island, Antarctica. J Mar Biol Assoc UK 75:689–703

    Article  Google Scholar 

  • Becker K, Hormchong T, Wahl M (2000) Relevance of crustacean carapace wettability for fouling. Hydrobiologia 426:193–201

    Article  Google Scholar 

  • Bernadsky G, Sar N, Rosenberg E (1993) Drag reduction of fish skin mucus: relationship to mode of swimming and size J Fish Biol 42(5):797–800

    Article  Google Scholar 

  • Bers AV, Prendergast GS, Zurn CM, Hansson L, Head RM, Thomason JC (2006) A comparative study of the anti-settlement properties of mytilid shells. Biol Lett 2:88–91

    Article  CAS  PubMed  Google Scholar 

  • Bourget E, Harvey M (1998) Spatial analysis of recruitment of marine invertebrates on arborescent substrata. Biofouling 12(1/3):45–55

    Article  Google Scholar 

  • Boyd KG, Adams DR, Burgess JG (1999) Antibacterial and repellent activities of marine bacteria associated with algal surfaces. Biofouling 14:227–236

    Article  Google Scholar 

  • Bryan PJ, Rittschof D, Qian PY (1997) Settlement inhibition of bryozoan larvae by bacterial films and aqueous leachates. Bull Mar Sci 61:849–857

    Google Scholar 

  • Buschbaum C, Reise K (1999) Effects of barnacle epibionts on the periwinkle Littorina littorea (L.). Helgoland Mar Res 53:56–61

    Article  Google Scholar 

  • Buschbaum C, Buschbaum G, Schrey I, Thieltges DW (2006) Shell-boring polychaetes affect gastropod shell strength and crab predation. Mar Ecol Prog Series 329:123–130

    Article  Google Scholar 

  • Cerrano C, Puce S, Chiantore M, Bavestrello G, Cattaneo-Vietti R (2001) The influence of the epizoic hydroid Hydractinia angusta on the recruitment of the Antarctic scallop Adamussium colbecki. Polar Biol 24:577–581

    Article  Google Scholar 

  • Chiavelli DA, Mills EL, Threlkeld ST (1993) Host preference, seasonality, and community interactions of zooplankton epibionts. Limnol Oceanogr 38:574–583

    Article  Google Scholar 

  • Clare AS (1996) Natural product antifoulants: status and potential. Biofouling 9:211–229

    Article  CAS  Google Scholar 

  • Clare AS, Rittschof D, Gerhart DJ, Maki JS (1992) Molecular approaches to nontoxic antifouling. Invertebr Reprod Dev 22:67–76

    Article  CAS  Google Scholar 

  • Cook JA, Chubb JC, Veltkamp CJ (1998) Epibionts of Asellus aquaticus (L.) (Crustacea, Isopoda): an SEM study. Freshwater Biol 39:423–438

    Article  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  CAS  PubMed  Google Scholar 

  • Davis AR, Moreno CA (1995) Selection of substrata by juvenile Choromytilus chorus (Mytilidae)—are chemical cues important. J Exp Mar Biol Ecol 191:167–180

    Article  Google Scholar 

  • Davis AR, White GA (1994) Epibiosis in a guild of sessile subtidal invertebrates in South-Eastern Australia—a quantitative survey. J Exp Mar Biol Ecol 177:1–14

    Article  Google Scholar 

  • Davis AR, Wright AE (1989) Interspecific differences in fouling of two congeneric ascidians (Eudistoma olivaceum and E. capsulatum): is surface acidity an effective defense? Mar Biol 102:491–497

    Article  Google Scholar 

  • Davis AR, Targett NM, McConnell OJ, Young CM (1989) Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. In: Scheuer PJ (ed) BioOrganic Marine Chemistry, vol 3. Springer, Berlin Heidelberg New York, pp 86–114

    Chapter  Google Scholar 

  • Dexter SC, Lucas KE (1985) The study of biofilm formation under water by photoacoustic spectroscopy. J Coll Interf Sci 104:15–27

    Article  CAS  Google Scholar 

  • Dobretsov SV (1999) Effects of macroalgae and biofilm on settlement of blue mussel (Mytilus edulis L.) larvae. Biofouling 14:153–165

    Article  Google Scholar 

  • Dobretsov SV, Qian PY (2002) Effect of bacteria associated with the green alga Ulva reticulata on marine micro- and macrofouling. Biofouling 18:217–228

    Article  Google Scholar 

  • Dobretsov S, Qian PY (2004) The role of epibotic bacteria from the surface of the soft coral Dendronephthya sp in the inhibition of larval settlement. J Exp Mar Biol Ecol 299:35–50

    Article  Google Scholar 

  • Dobretsov S, Dahms HU, Qian PY (2004) Antilarval and antimicrobial activity of waterborne metabolites of the sponge Callyspongia (Euplacella) pulvinata: evidence of allelopathy. Mar Ecol Prog Ser 271:133–146

    Article  Google Scholar 

  • Dobretsov S, Dahms HU, Qian PY (2005) Antibacterial and anti-diatom activity of Hong Kong sponges. Aquat Microb Ecol 38:191–201

    Article  Google Scholar 

  • Dobretsov S, Dahms HU, Harder T, Qian PY (2006) Allelochemical defense against epibiosis in the macroalga Caulerpa racemosa var. turbinata. Mar Ecol Prog Ser 318:165–175

    Article  CAS  Google Scholar 

  • Dougherty JR, Russell MP (2005) The association between the coquina clam Donax fossor Say and its epibiotic hydroid Lovenella gracilis Clarke. J Shellfish Res 24:35–46

    Google Scholar 

  • Dreanno C, Matsumura K, Dohnae N, Takio K, Hirota H, Kirby R, Clare AS (2006) An {alpha}2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc Natl Acad Sci USA 103:14396–14401

    Article  CAS  PubMed  Google Scholar 

  • Egan S, Thomas T, Holmstrom C, Kjelleberg S (2000) Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca. Environ Microbiol 2:343–347

    Article  CAS  PubMed  Google Scholar 

  • Enderlein P, Moorthi S, Rohrscheidt H, Wahl M (2003) Optimal foraging versus shared doom effects: interactive influence of mussel size and epibiosis on predator preference. J Exp Mar Biol Ecol 292:231–242

    Article  Google Scholar 

  • Fernandez L, Parapar J, Gonzalez-Gurriaran E, Muino R (1998) Epibiosis and ornamental cover patterns of the spider crab Maja squinado on the Galician coast, northwestern Spain: influence of behavioral and ecological characteristics of the host. J Crustacean Biol 18:728–737

    Article  Google Scholar 

  • Forester AJ (1979) The association between the sponge Halichondria panicea (Pallas) and the scallop Chlamys varia (L.): a commensal–protective mutualism. J Exp Mar Biol Ecol 36:1–10

    Article  Google Scholar 

  • Gili JM, Abello P, Villanueva R (1993) Epibionts and intermolt duration in the crab Bathynectes piperitus. Mar Ecol Prog Ser 98:107–113

    Article  Google Scholar 

  • Gilturnes MS, Fenical W (1992) Embryos of Homarus americanus are protected by epibiotic bacteria. Biol Bull 182:105–108

    Article  Google Scholar 

  • Gribben PE, Marshall DJ, Steinberg PD (2006) Less inhibited with age? Larval age modifies responses to natural settlement inhibitors. Biofouling 22:101–106

    Article  CAS  PubMed  Google Scholar 

  • Gutt J, Schickan T (1998) Epibiotic relationships in the Antarctic benthos. Antarctic Sci 10:398–405

    Article  Google Scholar 

  • Hadfield MG, Paul V (2001) Natural chemical cues for settlement and metamorphosis of marine invertebrate larvae. In: McClintock B, Baker BJ (eds) Marine chemical ecology. CRC Press, Boca Raton, FL, pp 1–610

    Google Scholar 

  • Harder T, Lam C, Qian PY (2002) Induction of larval settlement in the polychaete Hydroides elegans by marine biofilms: an investigation of monospecific diatom films as settlement cues. Mar Ecol Prog Ser 229:105–112

    Article  Google Scholar 

  • Harder T, Lau SCK, Dobretsov S, Fang TK, Qian PY (2003) A distinctive epibiotic bacterial community on the soft coral Dendronephthya sp and antibacterial activity of coral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMS Microbiol Ecol 43:337–347

    Article  CAS  PubMed  Google Scholar 

  • Hodson SL, Burke C (1994) Microfouling of salmon cage netting: a preliminary investigation. Biofouling 8:93–105

    Article  Google Scholar 

  • Hurd CL, Durante KM, Harrison PJ (2000) Influence of bryozoan colonization on the physiology of the kelp Macrocystis integrifolia (Laminariales, Phaeophyta) from nitrogen-rich and -poor sites in Barkley Sound, British Columbia, Canada. Phycologia 39:435–440

    Article  Google Scholar 

  • Kanagasabhapathy M, Sasaki H, Haldar S, Yamasaki S, Nagata S (2006) Antibacterial activities of marine epibiotic bacteria isolated from brown algae of Japan. Ann Microbiol 56:167–173

    Article  CAS  Google Scholar 

  • Kelly SR, Jensen PR, Henkel TP, Fenical W, Pawlik JR (2003) Effects of Caribbean sponge extracts on bacterial attachment. Aquat Microb Ecol 31:175–182

    Article  Google Scholar 

  • Key MM, Jeffries WB, Voris HK, Yang CM (1996) Epizoic bryozoans, horseshoe crabs, and other mobile benthic substrates. Bull Mar Sci 58:368–384

    Google Scholar 

  • Laudien J, Wahl M (1999) Indirect effects of epibiosis on host mortality: seastar predation on differently fouled mussels. PSZNI Mar Ecol 20:35–47

    Article  Google Scholar 

  • Laudien J, Wahl M (2004) Associational resistance of fouled blue mussels (Mytilus edulis) against starfish (Asterias rubens) predation: relative importance of structural and chemical properties of the epibionts. Helgoland Mar Res 58:162–167

    Article  Google Scholar 

  • Lee OO, Qian PY (2004) Potential control of bacterial epibiosis on the surface of the sponge Mycale adhaerens. Aquat Microb Ecol 34:11–21

    Article  Google Scholar 

  • Lee OO, Lau SCK, Qian PY (2006) Defense against epibiosis in the sponge Mycale adhaerens: modulating the bacterial community associated with its surface. Aquat Microb Ecol 43:55–65

    Article  CAS  Google Scholar 

  • Maki JS, Mitchell K (2002) Biofouling in the marine environment. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 610–619

    Google Scholar 

  • Maldonado M, Uriz MJ (1992) Relationships between sponges and crabs—patterns of epibiosis on Inachus aguiarii (Decapoda, Majidae). Mar Biol 113:281–286

    Google Scholar 

  • Manning LM, Lindquist N (2003) Helpful habitant or pernicious passenger: interactions between an infaunal bivalve, an epifaunal hydroid and three potential predators. Oecologia 134:415–422

    PubMed  Google Scholar 

  • Manriquez PH, Cancino JM (1996) Bryozoan-macroalgal interactions: do epibionts benefit? Mar Ecol Prog Ser 138:189–197

    Article  Google Scholar 

  • Marin A, Belluga MDL (2005) Sponge coating decreases predation on the bivalve Arca noae. J Mollus Stud 71:1–6

    Article  Google Scholar 

  • Maximilien R, de Nys R, Holmstrom C, Gram L, Givskov M, Crass K, Kjelleberg S, Steinberg PD (1998) Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat Microb Ecol 15:233–246

    Article  Google Scholar 

  • Mearns-Spragg A, Bregu M, Boyd KG, Burgess JG (1998) Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. Lett Appl Microbiol 27:142–146

    Article  CAS  PubMed  Google Scholar 

  • Nylund GM, Cervin G, Hermansson M, Pavia H (2005) Chemical inhibition of bacterial colonization by the red alga Bonnemaisonia hamifera. Mar Ecol Prog Ser 302:27–36

    Article  CAS  Google Scholar 

  • Orlov D (1997) Epizoic associations among the white sea hydroids. Sci Mar 61:17–26

    Google Scholar 

  • Patil JS, Anil AC (2000) Epibiotic community of the horseshoe crab Tachypleus gigas. Mar Biol 136:699–713

    Article  Google Scholar 

  • Pelletreau KN, Muller-Parker G (2002) Sulfuric acid in the phaeophyte alga Desmarestia munda deters feeding by the sea urchin Strongylocentrotus droebachiensis. Mar Biol 141:1–9

    Article  CAS  Google Scholar 

  • Pitcher CR, Butler AJ (1987) Predation by asteroids, escape response, and morphometrics of scallops with epizoic sponges. J Exp Mar Biol Ecol 112:233–249

    Article  Google Scholar 

  • Prescott RC (1990) Sources of predatory mortality in the bay scallop Argopecten irradians (Lamarck)—interactions with seagrass and epibiotic coverage. J Exp Mar Biol Ecol 144:63–83

    Article  Google Scholar 

  • Railkin AI (2004) Marine biofouling: colonization processes and defenses. CRC Press, Boca Raton, FL

    Google Scholar 

  • Reiss H, Knauper S, Kröncke I (2003) Invertebrate associations with gastropod shells inhabited by Pagurus bernhardus (Paguridae)—secondary hard substrate increasing biodiversity in North Sea soft-bottom communities. Sarsia 88:404–414

    Article  Google Scholar 

  • Saroyan JR (1968) Marine biology in antifouling paints. J Paint Technol 41:285–303

    Google Scholar 

  • Steinberg PD, De Nys R, Kjelleberg S (1998) Chemical inhibition of epibiota by Australian seaweeds. Biofouling 12:227–244

    Article  Google Scholar 

  • Thevanathan R, Nirmala N, Manoharan A, Gangadharan A, Rajarajan R, Dhamotharan R, Selvaraj S (2000) On the occurrence of nitrogen fixing bacteria as epibacterial flora of some marine green algae. Seaweed Res Utiln 22:189–197

    Google Scholar 

  • Thieltges DW, Buschbaum C (2007) Vicious circle in the intertidal: facilitation between barnacle epibionts, a shell boring polychaete and trematode parasites in the periwinkle Littorina littorea. J Exp Mar Biol Ecol 340:90–95

    Article  Google Scholar 

  • Threlkeld ST, Willey RL (1993) Colonization, interaction, and organization of Cladoceran epibiont communities. Limnol Oceanogr 38:584–591

    Article  Google Scholar 

  • Wahl M (1989) Marine epibiosis. 1. Fouling and antifouling—some basic aspects. Mar Ecol Prog Ser 58:175–189

    Article  Google Scholar 

  • Wahl M (1997a) Increased drag reduces growth of snails: comparison of flume and in situ experiments. Mar Ecol Prog Ser 151:291–293

    Article  Google Scholar 

  • Wahl M (1997b) Living attached: aufwuchs, fouling, epibiosis. In: Nagabhushanam R, Thompson MF (eds) Fouling organisms of the Indian Ocean: biology and control technology. Oxford & IBH, New Delhi

    Google Scholar 

  • Wahl M (2001) Small scale variability of benthic assemblages: biogenic neighborhood effects. J Exp Mar Biol Ecol 258:101–114

    Article  PubMed  Google Scholar 

  • Wahl M (2008) Ecological lever and interface ecology: epibiosis modulates the interactions between host and environment. Biofouling 24:427–438

    Article  PubMed  Google Scholar 

  • Wahl M, Banaigs B (1991) Marine epibiosis. 3. Possible antifouling defense adaptations in Polysyncraton lacazei (Giard) (Didemnidae, Ascidiacea). J Exp Mar Biol Ecol 145:49–63

    Article  Google Scholar 

  • Wahl M, Hay ME (1995) Associational resistance and shared doom—effects of epibiosis on herbivory. Oecologia 102:329–340

    Article  Google Scholar 

  • Wahl M, Hoppe K (2002) Interactions between substratum rugosity, colonization density, and periwinkle grazing efficiency. Mar Ecol Prog Ser 225:239–249

    Article  Google Scholar 

  • Wahl M, Lafargue F (1990) Marine epibiosis. 2. Reduced fouling on Polysyncraton lacazei (Didemnidae, Tunicata) and proposal of an antifouling potential index. Oecologia 82:275–282

    Article  Google Scholar 

  • Wahl M, Mark O (1999) The predominantly facultative nature of epibiosis: experimental and observational evidence. Mar Ecol Prog Ser 187:59–66

    Article  Google Scholar 

  • Wahl M, Jensen PR, Fenical W (1994) Chemical control of bacterial epibiosis on ascidians. Mar Ecol Prog Ser 110:45–57

    Article  Google Scholar 

  • Wahl M, Hay ME, Enderlein P (1997) Effects of epibiosis on consumer-prey interactions. Hydrobiologia 355:49–59

    Article  Google Scholar 

  • Wahl M, Kroger K, Lenz M (1998) Non-toxic protection against epibiosis. Biofouling 12:205–226

    Article  Google Scholar 

  • Warner GF (1997) Occurrence of epifauna on the periwinkle, Littorina littorea (L.), and interactions with the polychaete Polydora ciliata (Johnston). Hydrobiologia 355:41–47

    Article  Google Scholar 

  • Wieczorek SK, Todd CD (1998) Inhibition and facilitation of settlement of epifaunal marine invertebrate larvae by microbial biofilm cues. Biofouling 12:81–118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wahl, M. (2009). Epibiosis. In: Wahl, M. (eds) Marine Hard Bottom Communities. Ecological Studies, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b76710_4

Download citation

Publish with us

Policies and ethics