Skip to main content

Medical Defense Against Protein Toxin Weapons

Review and Perspective

  • Chapter
Biological Weapons Defense

Part of the book series: Infectious Disease ((ID))

Abstract

The term “toxin weapon” has been used to describe poisons, classically of natural origin but increasingly accessible by modern synthetic methods, which are suitable for delivery on a battlefield in a form that causes death or severe incapacitation at relatively low concentrations (reviewed in ref. 1). Several of the most important toxin weapons are proteins, and these molecules are the focus of this chapter. Recent technological changes have increased the importance of protein toxins for biological warfare (BW): (a) progress in biotechnology has made large-scale production and purification feasible for a larger number of protein toxins; (b) molecular biology techniques, especially the polymerase chain reaction, have enabled the identification, isolation and comparison of extended families of previously obscure natural toxins; and (c) gene manipulation and microbiology have greatly expanded the accessible delivery vehicles for protein toxins to include, for example, natural or genetically modified bacteria and engineered viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Franz, D. R. (1997) Defense against toxin weapons, in Medical Aspects of Chemical and Biological Warfare (Sidell, F. R., Takafuji, E. T., and Franz, D. R., eds.), Office of the Surgeon General, Department of the Army, United States of America: Washington, D.C. pp. 603–620.

    Google Scholar 

  2. Gill, D. M. (1982) Bacterial toxins: a table of lethal amounts. Microbiol. Rev. 46(1), 86–94.

    PubMed  CAS  Google Scholar 

  3. Hatheway, C. L. (1990) Toxigenic clostridia. Clin. Microbiol. Rev. 3(1), 66–98.

    PubMed  CAS  Google Scholar 

  4. Paddle, B. M. (2003) Therapy and prophylaxis of inhaled biological toxins. J. Appl. Toxicol. 23(3), 139–170.

    PubMed  CAS  Google Scholar 

  5. Dack, G. M. (1956) Food Poisoning. Third ed. The University of Chicago Press, Chicago, p. 251.

    Google Scholar 

  6. Morgan, J. C. and Bleck, T. P. (2002) Clinical aspects of tetanus, in Scientific and Therapeutic Aspects of Botulinum Toxin. (Brin, M. F., Jankovic, J., and Hallett, M., eds.), Lippincott Williams & Wilkins, Philadelphia, PA, pp. 151–164.

    Google Scholar 

  7. Newman, M. J. and Powell, M. F. (1995) Immunological and formulation design considerations for subunit vaccines, in Vaccin Design: The Subunit and Adjuvant Approach. (Powell, M. F. and Newman, M. J., eds.), Plenum Press, New York, pp. 1–42.

    Google Scholar 

  8. Mikszta, J. A., et al. (2002) Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat. Med. 8(4), 415–419.

    PubMed  CAS  Google Scholar 

  9. Aoki, K. R. (2002) Physiology and pharmacology of therapeutic botulinum neurotoxins. Curr. Prob. Dermatol. 30, 107–116.

    CAS  Google Scholar 

  10. Jankovic, J. (2002) Botulinum toxin: clinical implications of antigenicity and immunoresistance, in Scientific and Therapeutic Aspects of Botulinum Toxin. (Brin, M. F., Jankovic, J., and Hallett, M., eds.), Lippincott Williams & Wilkins, Philadelphia, PA, 409–415.

    Google Scholar 

  11. Arnon, S. S., et al. (2001) Botulinum toxin as a biological weapon: medical and public health management. JAMA 285(8), 1059–1070.

    PubMed  CAS  Google Scholar 

  12. Simpson, L. L. (1981) The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol. Rev. 33(3), 155–188.

    PubMed  CAS  Google Scholar 

  13. Shapiro, R. L., Hatheway, C., and Swerdlow, D. L. (1998) Botulism in the United States: a clinical and epidemiologic review. Ann. Intern. Med. 129(3), 221–228.

    PubMed  CAS  Google Scholar 

  14. Franz, D. R., Parrott, C. D., and Takafuji, E. T. (1997) The U. S. Biological Warfare and Biological Defense Programs, in Medical Aspects of Chemical and Biological Warfare (Sidell, F. R., Takafuji, E. T., and Franz, D. R., eds.), Office of the Surgeon General, Department of the Army, United States of America, Washington, D.C., pp. 425–436.

    Google Scholar 

  15. Umland, T. C., et al. (1997) Structure of the receptor binding fragment HC of tetanus neurotoxin. Nat. Struct. Biol. 4(10), 788–792.

    PubMed  CAS  Google Scholar 

  16. Lacy, D. B., et al. (1998) Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 5(10), 898–902.

    PubMed  CAS  Google Scholar 

  17. Lacy, D. B. and Stevens, R. C. (1999) Sequence homology and structural analysis of the clostridial neurotoxins. J. Mol. Biol. 291(5), 1091–1104.

    PubMed  CAS  Google Scholar 

  18. Eswaramoorthy, S., Kumaran, D., and Swaminathan, S. (2001) Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B. Acta Crystallogr. D Biol. Crystallogr. 57(Pt 11), 1743–1746.

    PubMed  CAS  Google Scholar 

  19. Montecucco, C. (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem. Sci. 11, 314–317.

    CAS  Google Scholar 

  20. Fujinaga, Y., et al. (1997) The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 143(Pt 12), 3841–3847.

    PubMed  CAS  Google Scholar 

  21. Koriazova, L. K. and Montal, M. (2003) Translocation of botulinum neurotoxin light chain protease through the heavy chain channel. Nat. Struct. Biol. 10(1), 13–18.

    PubMed  CAS  Google Scholar 

  22. Sheridan, R. E. (1998) Gating and permeability of ion channels produced by botulinum toxin types A and E in PC12 cell membranes. Toxicon 36(5), 703–717.

    PubMed  CAS  Google Scholar 

  23. Simpson, L. L. (1986) Molecular pharmacology of botulinum toxin and tetanus toxin. Annu. Rev. Pharmacol. Toxicol. 26, 427–453.

    PubMed  CAS  Google Scholar 

  24. Poulain, B., et al. (1991) Heterologous combinations of heavy and light chains from botulinum neurotoxin A and tetanus toxin inhibit neurotransmitter release in Aplysia. J. Biol. Chem. 266(15), 9580–9585.

    PubMed  CAS  Google Scholar 

  25. Hanson, P. I., Heuser, J. E., and Jahn, R. (1997) Neurotransmitter release—four years of SNARE complexes. Curr. Opin. Neurobiol. 7(3), 310–315.

    PubMed  CAS  Google Scholar 

  26. Brunger, A. T. (2001) Structure of proteins involved in synaptic vesicle fusion in neurons. Annu. Rev. Biophys. Biomol. Struct. 30, 157–171.

    PubMed  CAS  Google Scholar 

  27. Rizo, J. (2003) SNARE function revisited. Nat. Struct. Biol. 10(6), 417–419.

    PubMed  CAS  Google Scholar 

  28. Reames, H. R., et al. (1947) Studies on botulinum toxoids, types A and B III. Immunization in man. J. Immunol. 55, 309–324.

    Google Scholar 

  29. Sterne, M. and Wentzel, L. M. (1950) A new method for the large-scale production of high-titre botulinum formol-toxoid types C and D. J. Immunol. 65, 175–183.

    PubMed  CAS  Google Scholar 

  30. Fiock, M. A., Cardella, M. A., and Gearinger, N. F. (1963) Studies of immunities to toxins of Clostridium botulinum. IX. Immunologic response of man to purified pentavalent ABCDE botulinum toxoid. J. Immunol. 90, 697–702.

    PubMed  CAS  Google Scholar 

  31. Cardella, M. A. (1964) Botulinum toxoids, in Botulism, Proceedings of a Symposium. U. S. Public Health Service Publication No. 999-FP-1. (Lewis, Jr., K. H. a. C., ed.), Public Health Service, Cincinnati, OH, pp. 113–130.

    Google Scholar 

  32. Anderson, J. H. and Lewis, G. E. (1981) Clinical evaluation of botulinum toxoids, in Biomedical Aspects of Botulism. (Lewis, G. E., ed.), Academic Press, New York, pp. 233–246.

    Google Scholar 

  33. Oguma, K., Fujinaga, Y., and Inoue, K. (1995) Structure and function of Clostridium botulinum toxins. Microbiol. Immunol. 39(3), 161–168.

    PubMed  CAS  Google Scholar 

  34. Siegel, L. S. (1988) Human immune response to botulinum pentavalent (ABCDE) toxoid determined by a neutralization test and by an enzyme-linked immunosorbent assay. J. Clin. Microbiol. 26(11), 2351–2356.

    PubMed  CAS  Google Scholar 

  35. Hatheway, C. (1976) Toxoid of Clostridium botulinum type F: purification and immunogenicity studies. Appl. Environ. Microbiol. 31, 234–242.

    PubMed  CAS  Google Scholar 

  36. Torii, Y., et al. (2002) Production and immunogenic efficacy of botulinum tetravalent (A, B, E, F) toxoid. Vaccine 20(19–20), 2556–2561.

    PubMed  CAS  Google Scholar 

  37. Byrne, M. P. and Smith, L. A. (2000) Development of vaccines for prevention of botulism. Biochimie 82(9–10), 955–966.

    PubMed  CAS  Google Scholar 

  38. Fairweather, N. F., Lyness, V. A., and Maskell, D. J. (1987) Immunization of mice against tetanus with fragments of tetanus toxin synthesized in Escherichia coli. Infect. Immun. 55(11), 2541–2545.

    PubMed  CAS  Google Scholar 

  39. Clayton, M. A., et al. (1995) Protective vaccination with a recombinant fragment of Clostridium botulinum neurotoxin serotype A expressed from a synthetic gene in Escherichia coli. Infect. Immun. 63(7), 2738–2742.

    PubMed  CAS  Google Scholar 

  40. LaPenotiere, H. F., Clayton, M. A., and Middlebrook, J. L. (1995) Expression of a large, nontoxic fragment of botulinum neurotoxin serotype A and its use as an immunogen. Toxicon 33(10), 1383–1386.

    PubMed  CAS  Google Scholar 

  41. Simpson, L. L. (1984) Fragment C of tetanus toxin antagonizes the neuromuscular blocking properties of native tetanus toxin. J. Pharmacol. Exp. Ther. 228(3), 600–604.

    PubMed  CAS  Google Scholar 

  42. Simpson, L. L. (1984) Botulinum toxin and tetanus toxin recognize similar membrane determinants. Brain Res. 305(1), 177–180.

    PubMed  CAS  Google Scholar 

  43. Helting, T. B. and Nau, H. H. (1984) Analysis of the immune response to papain digestion products of tetanus toxin. Acta Pathol. Microbiol. Immunol. Scand. (C) 92(1), 59–63.

    CAS  Google Scholar 

  44. Thompson, D. E., et al. (1990) The complete amino acid sequence of the Clostridium botulinum type A neurotoxin, deduced by nucleotide sequence analysis of the encoding gene. Eur. J. Biochem. 189(1), 73–81.

    PubMed  CAS  Google Scholar 

  45. Dertzbaugh, M. T. and West, M. W. (1996) Mapping of protective and cross-reactive domains of the type A neurotoxin of Clostridium botulinum. Vaccine 14(16), 1538–1544.

    PubMed  CAS  Google Scholar 

  46. Middlebrook, J. L. (1995) Protection strategies against botulinum toxin. Adv. Exp. Med. Biol. 383, 93–98.

    PubMed  CAS  Google Scholar 

  47. Potter, K. J., et al. (1998) Production and purification of the heavy-chain fragment C of botulinum neurotoxin, serotype B, expressed in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 13(3), 357–365.

    PubMed  CAS  Google Scholar 

  48. Byrne, M. P., et al. (1998) Purification, potency, and efficacy of the botulinum neurotoxin type A binding domain from Pichia pastoris as a recombinant vaccine candidate. Infect. Immun. 66(10), 4817–4822.

    PubMed  CAS  Google Scholar 

  49. Byrne, M. P., et al. (2000) Fermentation, purification, and efficacy of a recombinant vaccine candidate against botulinum neurotoxin type F from Pichia pastoris. Protein Expr. Purif. 18(3), 327–337.

    PubMed  CAS  Google Scholar 

  50. Potter, K. J., et al. (2000) Production and purification of the heavy chain fragment C of botulinum neurotoxin, serotype A, expressed in the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 19(3), 393–402.

    PubMed  CAS  Google Scholar 

  51. Woodward, L. A., et al. (2003) Expression of HC subunits from Clostridium botulinum types C and D and their evaluation as candidate vaccine antigens in mice. Infect. Immun. 71(5), 2941–2944.

    PubMed  CAS  Google Scholar 

  52. Bouvier, A., et al. (2003) Identifying and modulating disulfide formation in the biopharmaceutical production of a recombinant protein vaccine candidate. J. Biotechnol. 103(3), 257–271.

    PubMed  CAS  Google Scholar 

  53. Atassi, M. Z. (2002) Immune recognition and cross-reactivity of botulinum neurotoxins, in Scientific and Therapeutic Aspects of Botulinum Toxin. (Brin, M. F., Jankovic, J., and Hallett, M., eds.), Lippincott, Williams & Wilkins, Philadelphia, PA, pp. 385–408.

    Google Scholar 

  54. Swaminathan, S. and Eswaramoorthy, S. (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat. Struct. Biol. 78), 693–699.

    PubMed  CAS  Google Scholar 

  55. Chaddock, J. A., et al. (2002) Expression and purification of catalytically active, nontoxic endopeptidase derivatives of Clostridium botulinum toxin type A. Protein Expr. Purif. 25(2), 219–228.

    PubMed  CAS  Google Scholar 

  56. Lee, J. S., et al. (2001) Candidate vaccine against botulinum neurotoxin serotype A derived from a Venezuelan equine encephalitis virus vector system. Infect. Immun. 69(9), 5709–5715.

    PubMed  CAS  Google Scholar 

  57. Park, J. B. and Simpson, L. L. (2003) Inhalational poisoning by botulinum toxin and inhalation vaccination with its heavy-chain component. Infect. Immun. 71(3), 1147–1154.

    PubMed  CAS  Google Scholar 

  58. Bennett, A. M., Perkins, S. D., and Holley, J. L. (2003) DNA vaccination protects against botulinum neurotoxin type F. Vaccine 21(23), 3110–3117.

    PubMed  CAS  Google Scholar 

  59. Foynes, S., et al. (2003) Vaccination against type F botulinum toxin using attenuated Salmonella enterica var Typhimurium strains expressing the BoNT/F H(C) fragment. Vaccine 21(11–12), 1052–1059.

    PubMed  CAS  Google Scholar 

  60. Kiyatkin, N., Maksymowych, A. B., and Simpson, L. L. (1997) Induction of an immune response by oral administration of recombinant botulinum toxin. Infect. Immun. 65(11), 4586–4591.

    PubMed  CAS  Google Scholar 

  61. Simpson, L. L., Maksymowych, A. B., and Kiyatkin, N. (1999) Botulinum toxin as a carrier for oral vaccines. Cell Mol. Life Sci. 56(1–2), 47–61.

    PubMed  CAS  Google Scholar 

  62. Zdanovsky, A. G. and Zdanovskaia, M. V. (2000) Simple and efficient method for heterologous expression of clostridial proteins. Appl. Environ. Microbiol. 66(8), 3166–3173.

    PubMed  CAS  Google Scholar 

  63. Bradshaw, M., Goodnough, M. C., and Johnson, E. A. (1998) Conjugative transfer of the Escherichia coli-Clostridium perfringens shuttle vector pJIR1457 to Clostridium botulinum type A strains. Plasmid 40(3), 233–237.

    PubMed  CAS  Google Scholar 

  64. Pless, D. D., et al. (2001) High-affinity, protective antibodies to the binding domain of botulinum neurotoxin type A. Infect. Immun. 69(1), 570–574.

    PubMed  CAS  Google Scholar 

  65. Amersdorfer, P., et al. (1997) Molecular characterization of murine humoral immune response to botulinum neurotoxin type A binding domain as assessed by using phage antibody libraries. Infect. Immun. 65(9), 3743–3752.

    PubMed  CAS  Google Scholar 

  66. Amersdorfer, P., et al. (2002) Genetic and immunological comparison of anti-botulinum type A antibodies from immune and non-immune human phage libraries. Vaccine 20(11–12), 1640–1648.

    PubMed  CAS  Google Scholar 

  67. Nowakowski, A., et al. (2002) Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc. Natl. Acad. Sci. USA 99(17), 11,346–11,350.

    PubMed  CAS  Google Scholar 

  68. Kuroiwa, Y., et al. (2002) Cloned transchromosomic calves producing human immunoglobulin. Nat. Biotechnol. 20(9), 889–894.

    PubMed  CAS  Google Scholar 

  69. Adler, M., et al. (1994) Evaluation of captopril and other potential therapeutic compounds in antagonizing botulinum toxin-induced muscle paralysis, in Therapy with Botulinum Toxin (Jankovic, J. and Hallett, M., eds.), Marcel Dekker, New York, pp. 63–70.

    Google Scholar 

  70. Adler, M., et al. (1998) Efficacy of a novel metalloprotease inhibitor on botulinum neurotoxin B activity. FEBS Lett. 429(3), 234–238.

    PubMed  CAS  Google Scholar 

  71. Schmidt, J. J., Stafford, R. G., and Millard, C. B. (2001) High-throughput assays for botulinum neurotoxin proteolytic activity: serotypes A, B, D, and F. Anal. Biochem. 296(1), 130–137.

    PubMed  CAS  Google Scholar 

  72. Schmidt, J. J. and Stafford, R. G. (2002) A high-affinity competitive inhibitor of type A botulinum neurotoxin protease activity. FEBS Lett. 532(3), 423–426.

    PubMed  CAS  Google Scholar 

  73. Anne, C., et al. (2003) Development of potent inhibitors of botulinum neurotoxin type B. J. Med. Chem. 46(22), 4648–4656.

    PubMed  CAS  Google Scholar 

  74. Anne, C., et al. (2003) Thio-derived disulfides as potent inhibitors of botulinum neurotoxin type B: implications for zinc interaction. Bioorg. Med. Chem. 11(21), 4655–4660.

    PubMed  CAS  Google Scholar 

  75. Zou, J., et al. (1985) The effect of toosendanin on monkey botulism. J. Tradit. Chin. Med. 5(1), 29, 30.

    PubMed  Google Scholar 

  76. Wang, Z. F. and Shi, Y. L. (2001) Toosendanin-induced inhibition of small-conductance calcium-activated potassium channels in CA1 pyramidal neurons of rat hippocampus. Neurosci. Lett. 303(1), 13–16.

    PubMed  CAS  Google Scholar 

  77. Xu, Y. and Shi, Y. (1993) Action of toosendanin on the membrane current of mouse motor nerve terminals. Brain Res. 631(1), 46–50.

    PubMed  CAS  Google Scholar 

  78. Shih, Y. L. (1986) Abolishment of non-quantal release of acetylcholine from the mouse phrenic nerve endings by toosendanin. Jpn. J. Physiol. 36(3), 601–605.

    PubMed  CAS  Google Scholar 

  79. Ding, J., Xu, T. H., and Shi, Y. L. (2001) Different effects of toosendanin on perineurially recorded Ca(2+) currents in mouse and frog motor nerve terminals. Neurosci. Res. 41(3), 243–249.

    PubMed  CAS  Google Scholar 

  80. Adler, M., et al. (1996) Effect of 3,4-diaminopyridine on rat extensor digitorum longus muscle paralyzed by local injection of botulinum neurotoxin. Toxicon 34(2), 237–249.

    PubMed  CAS  Google Scholar 

  81. Adler, M., Capacio, B., and Deshpande, S. S. (2000) Antagonism of botulinum toxin Amediated muscle paralysis by 3, 4-diaminopyridine delivered via osmotic minipumps. Toxicon 38(10), 1381–1388.

    PubMed  CAS  Google Scholar 

  82. O’Sullivan, G. A., et al. (1999) Rescue of exocytosis in botulinum toxin A-poisoned chromaffin cells by expression of cleavage-resistant SNAP-25. Identification of the minimal essential C-terminal residues. J. Biol. Chem. 274(52), 36,897–36,904.

    PubMed  CAS  Google Scholar 

  83. Ulrich, R. G., Bavari, S., and Olson, M. A. (1995) Bacterial superantigens in human disease: structure, function and diversity. Trends Microbiol. 3(12), 463–468.

    PubMed  CAS  Google Scholar 

  84. Spero, L., Johnson-Winegar, A., and Schmidt, J. J. (1988) Enterotoxins of Staphylococci, in Bacterial Toxins: Handbook of Natural Toxins (Hardegree, M. C. and Tu, A. T. eds.), Marcel Dekker, New York, pp. 131–163.

    Google Scholar 

  85. Bohach, G. A., et al. (1996) The staphylococcal and streptococcal pyrogenic toxin family. Adv. Exp. Med. Biol. 391, 131–154.

    PubMed  CAS  Google Scholar 

  86. Sundberg, E. J., Li, Y., and Mariuzza, R. A. (2002) So many ways of getting in the way: diversity in the molecular architecture of superantigen-dependent T-cell signaling complexes. Curr. Opin. Immunol. 14(1), 36–44.

    PubMed  CAS  Google Scholar 

  87. Dinges, M. M., Orwin, P. M., and Schlievert, P. M. (2000) Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13(1), 16–34, table of contents.

    PubMed  CAS  Google Scholar 

  88. Ulrich, R. G. (2000) Evolving superantigens of Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 27(1), 1–7.

    PubMed  CAS  Google Scholar 

  89. Swaminathan, S., et al. (1988) Crystallization and preliminary X-ray study of staphylococcal enterotoxin B. J. Mol. Biol. 199(2), 397.

    PubMed  CAS  Google Scholar 

  90. Swaminathan, S., et al. (1992) Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359(6398), 801–806.

    PubMed  CAS  Google Scholar 

  91. Swaminathan, S., et al. (1995) Residues defining V beta specificity in staphylococcal enterotoxins. Nat. Struct. Biol. 2(8), 680–686.

    PubMed  CAS  Google Scholar 

  92. Krakauer, T. (1999) Immune response to staphylococcal superantigens. Immunol. Res. 20, 163–173.

    PubMed  CAS  Google Scholar 

  93. Ulrich, R. G., et al. (1997) Staphylococcal enterotoxin B and related pyrogenic toxins, in Medical Aspects of Chemical and Biological Warfare (Sidell, F. R., Takafuji, E. T., and Franz, D. R., eds.), Office of the Surgeon General, Department of the Army, United States of America, Washington, D.C., pp. 621–630.

    Google Scholar 

  94. Schantz, E. J., et al. (1965) Purification of staphylococcal enterotoxin B. Biochemistry 4, 1011–1016.

    PubMed  CAS  Google Scholar 

  95. McGann, V. G. (1969) Evaluation of immunity against staphylococcal enterotoxin B. Commission on Epidemiological Survey, Annual Report to the Armed Forces.

    Google Scholar 

  96. McGann, V. G., et al. (1970) Immunological studies with microbial toxins. Research and Techology Work Unit Summary. Annual Progress Report. U. S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD.

    Google Scholar 

  97. Denniston, J. C., et al. (1970) Hypersensitivity reaction to staphylococcal enterotoxin B. Commission on Eppidemiological Survey. Annual Report to the Armed Forces Epidemiological Board FY 1970. Fort Detrick, MD.

    Google Scholar 

  98. Warren, J. R., Spero, L., and Metzger, J. F. (1974) The pH dependence of enterotoxin polymerization by formaldehyde. Biochim. Biophys. Acta 365(2), 434–438.

    PubMed  CAS  Google Scholar 

  99. Warren, J. R., et al. (1975) Immunogenicity of formaldehyde-inactivated enterotoxins A and C1 of Staphylococcus aureus. J. Infect. Dis. 131(5), 535–542.

    PubMed  CAS  Google Scholar 

  100. Tseng, J., et al. (1993) Immunity and responses of circulating leukocytes and lymphocytes in monkeys to aerosolized staphylococcal enterotoxin B. Infect. Immun. 61(2), 391–398.

    PubMed  CAS  Google Scholar 

  101. Tseng, J., et al. (1995) Humoral immunity to aerosolized staphylococcal enterotoxin B (SEB), a superantigen, in monkeys vaccinated with SEB toxoid-containing microspheres. Infect. Immun. 63(8), 2880–2885.

    PubMed  CAS  Google Scholar 

  102. Lowell, G. H., et al. (1996) Immunogenicity and efficacy against lethal aerosol staphylococcal enterotoxin B challenge in monkeys by intramuscular and respiratory delivery of proteosome-toxoid vaccines. Infect. Immun. 64(11), 4686–4693.

    PubMed  CAS  Google Scholar 

  103. Lowell, G. H., et al. (1996) Intranasal and intramuscular proteosome-staphylococcal enterotoxin B (SEB) toxoid vaccines: immunogenicity and efficacy against lethal SEB intoxication in mice. Infect. Immun. 64(5), 1706–1713.

    PubMed  CAS  Google Scholar 

  104. Ulrich, R. G., Olson, M. A., and Bavari, S. (1998) Development of engineered vaccines effective against structurally related bacterial superantigens. Vaccine 16(19), 1857–1864.

    PubMed  CAS  Google Scholar 

  105. Ulrich, R. G., Bavari, S., and Olson, M. A. (1995) Staphylococcal enterotoxins A and B share a common structural motif for binding class II major histocompatibility complex molecules. Nat. Struct. Biol. 2(7), 554–560.

    PubMed  CAS  Google Scholar 

  106. Leder, L., et al. (1998) A mutational analysis of the binding of staphylococcal enterotoxins B and C3 to the T cell receptor beta chain and major histocompatibility complex class II. J. Exp. Med. 187(6), 823–833.

    PubMed  CAS  Google Scholar 

  107. Olson, M. A. and Cuff, L. (1997) Molecular docking of superantigens with class II major histocompatibility complex proteins. J. Mol. Recognit. 10(6), 277–289.

    PubMed  CAS  Google Scholar 

  108. Woody, M. A., et al. (1998) Differential immune responses to staphylococcal enterotoxin B mutations in a hydrophobic loop dominating the interface with major histocompatibility complex class II receptors. J. Infect. Dis. 177(4), 1013–1022.

    PubMed  CAS  Google Scholar 

  109. Krupka, H. I., et al. (2002) Structural basis for abrogated binding between staphylococcal enterotoxin A superantigen vaccine and MHC-IIalpha. Protein Sci. 11(3), 642–651.

    PubMed  CAS  Google Scholar 

  110. DaSilva, L., et al. (2002) Humanlike immune response of human leukocyte antigen-DR3 transgenic mice to staphylococcal enterotoxins: a novel model for superantigen vaccines. J. Infect Dis. 185(12), 1754–1760.

    PubMed  CAS  Google Scholar 

  111. Coffman, J. D., et al. (2002) Production and purification of a recombinant Staphylococcal enterotoxin B vaccine candidate expressed in Escherichia coli. Protein Expr. Purif. 24(2), 302–312.

    PubMed  CAS  Google Scholar 

  112. Bavari, S., Dyas, B., and Ulrich, R. G. (1996) Superantigen vaccines: a comparative study of genetically attenuated receptor-binding mutants of staphylococcal enterotoxin A. J. Infect. Dis. 174(2), 338–345.

    PubMed  CAS  Google Scholar 

  113. Nilsson, I. M., et al. (1999) Protection against Staphylococcus aureus sepsis by vaccination with recombinant staphylococcal enterotoxin A devoid of superantigenicity. J. Infect. Dis. 180(4), 1370–1373.

    PubMed  CAS  Google Scholar 

  114. Swietnicki, W., et al. (2003) Zinc Binding and dimerization of streptococcus pyogenes pyrogenic exotoxin C are not essential for T-cell stimulation. J. Biol. Chem. 278(11), 9885–9895.

    PubMed  CAS  Google Scholar 

  115. Krakauer, T. and Buckley, M. (2003) Doxycycline is anti-inflammatory and inhibits staphylococcal exotoxin-induced cytokines and chemokines. Antimicrob. Agents Chemother. 47(11), 3630–3633.

    PubMed  CAS  Google Scholar 

  116. Krakauer, T., Li, B. Q., and Young, H. A. (2001) The flavonoid baicalin inhibits superantigen-induced inflammatory cytokines and chemokines. FEBS Lett. 500(1-2), 52–55.

    Google Scholar 

  117. Krakauer, T. (2001) Suppression of endotoxin-and staphylococcal exotoxin-induced cytokines and chemokines by a phospholipase C inhibitor in human peripheral blood mononuclear cells. Clin. Diagn. Lab. Immunol. 8(2), 449–453.

    PubMed  CAS  Google Scholar 

  118. Cope, A. C. (1946) Chapter 12: Ricin in Summary technical report of Division 9 on Chemical warfare and related problems: Parts I-II. National Defense Research Committee, Office of Scientific Research and Development, Washington DC, pp. 179–203.

    Google Scholar 

  119. Knight, B. (1979) Ricin—a potent homicidal poison. Br. Med. J. 1(6159), 350, 351.

    PubMed  Google Scholar 

  120. Hewetson, J. F., et al. (1993) Protection of mice from inhaled ricin by vaccination with ricin or by passive treatment with heterologous antibody. Vaccine 11(7), 743–746.

    PubMed  CAS  Google Scholar 

  121. Griffiths, G. D., et al. (1996) The inhalation toxicology of the castor bean toxin, ricin, and protection by vaccination. J. Defense Sci. 1(2), 227–235.

    Google Scholar 

  122. Crompton, R. and Gall, D. (1980) Georgi Markov—death in a pellet. Med. Leg. J. 48(2), 51–62.

    PubMed  CAS  Google Scholar 

  123. Franz, D. R. and Jaax, N. K. (1997) Ricin toxin, in Medical Aspects of Chemical and Biological Warfare (Sidell, F. R., Takafuji, E. T., and Franz, D. R., eds.), Office of the Surgeon General, Department of the Army, United States of America, Washington, D.C., pp. 631–642.

    Google Scholar 

  124. Robertus, J. (1991) The structure and action of ricin, a cytotoxic N-glycosidase. Semin. Cell Biol. 2(1), 23–30.

    PubMed  CAS  Google Scholar 

  125. Lord, J. M., Hartley, M. R., and Roberts, L. M. (1991) Ribosome inactivating proteins of plants. Semin. Cell Biol. 2(1), 15–22.

    PubMed  CAS  Google Scholar 

  126. Obrig, T. G. (1994) Toxins that inhibit host protein synthesis. Methods Enzymol. 235, 647–656.

    PubMed  CAS  Google Scholar 

  127. Balint, G. A. (1974) Ricin: the toxic protein of castor oil seeds. Toxicology 2(1), 77–102.

    PubMed  CAS  Google Scholar 

  128. Brugsch, H. G. (1960) Toxic hazards: The castor bean. Mass. Med. Soc. 262(1039-1040).

    Google Scholar 

  129. Wilhelmsen, C. L. and Pitt, M. L. (1996) Lesions of acute inhaled lethal ricin intoxication in rhesus monkeys. Vet. Pathol. 33(3), 296–302.

    PubMed  CAS  Google Scholar 

  130. Griffiths, G. D., Phillips, G. J., and Bailey, S. C. (1999) Comparison of the quality of protection elicited by toxoid and peptide liposomal vaccine formulations against ricin as assessed by markers of inflammation. Vaccine 17(20–21), 2562–2568.

    PubMed  CAS  Google Scholar 

  131. Ghetie, V. and Vitetta, E. (1994) Immunotoxins in the therapy of cancer: from bench to clinic. Pharmacol. Ther. 63(3), 209–234.

    PubMed  CAS  Google Scholar 

  132. Vitetta, E. S., Thorpe, P. E., and Uhr, J. W. (1993) Immunotoxins: magic bullets or misguided missiles? Trends Pharmacol. Sci. 14(5), 148–154.

    PubMed  CAS  Google Scholar 

  133. Soler-Rodriguez, A. M., et al. (1992) The toxicity of chemically deglycosylated ricin Achain in mice. Int. J. Immunopharmacol. 14(2), 281–291.

    PubMed  CAS  Google Scholar 

  134. Lord, J. M., et al. (1987) Ricin: cytotoxicity, biosynthesis and use in immunoconjugates. Prog. Med. Chem. 24, 1–28.

    PubMed  CAS  Google Scholar 

  135. Lemley, P. V. and Creasia, D. A. (1995) Vaccine against ricin toxin, in U. S. Patent & Trademark Office. United States of America, Secretary of the Army, Washington, DC.

    Google Scholar 

  136. Lemley, P. V. and Wright, D. C. (1992) Mice are actively immunized after passive monoclonal antibody prophylaxis and ricin toxin challenge. Immunology 76(3), 511–513.

    PubMed  CAS  Google Scholar 

  137. Aboud-Pirak, E., et al. (1993) Identification of a neutralizing epitope on ricin a chain and application of its 3D structure to design peptide vaccines that protect against ricin intoxication, in 1993 Medical Defense Bioscience Review. U. S. Army Medical Research & Materiel Command, Baltimore, MD.

    Google Scholar 

  138. Griffiths, G. D., et al. (1998) Local and systemic responses against ricin toxin promoted by toxoid or peptide vaccines alone or in liposomal formulations. Vaccine 16(5), 530–535.

    PubMed  CAS  Google Scholar 

  139. Smallshaw, J. E., et al. (2002) A novel recombinant vaccine which protects mice against ricin intoxication. Vaccine 20(27–28), 3422–3427.

    PubMed  CAS  Google Scholar 

  140. Olson, M. A. (1997) Ricin A-chain structural determinant for binding substrate analogues: a molecular dynamics simulation analysis. Proteins 27(1), 80–95.

    PubMed  CAS  Google Scholar 

  141. Olson, M. A. and Cuff, L. (1999) Free energy determinants of binding the rRNA substrate and small ligands to ricin A-chain. Biophys. J. 76(1 Pt 1), 28–39.

    PubMed  CAS  Google Scholar 

  142. Olson, M. A. (2001) Electrostatic effects on the free-energy balance in folding a ribosome-inactivating protein. Biophys. Chem. 91(3), 219–229.

    PubMed  CAS  Google Scholar 

  143. Tanaka, K. S., et al. (2001) Ricin A-chain inhibitors resembling the oxacarbenium ion transition state. Biochemistry 40(23), 6845–6851.

    PubMed  CAS  Google Scholar 

  144. Miller, D. J., et al. (2002) Structure-based design and characterization of novel platforms for ricin and shiga toxin inhibition. J. Med. Chem. 45(1), 90–98.

    PubMed  CAS  Google Scholar 

  145. Hopkins, A. L. and Groom, C. R. (2002) The druggable genome. Nat. Rev. Drug Discov. 1(9), 727–730.

    PubMed  CAS  Google Scholar 

  146. Finkel, E. (2001) Australia. Engineered mouse virus spurs bioweapon fears. Science 291(5504), 585.

    PubMed  CAS  Google Scholar 

  147. Landgraf, R., et al. (1998) Cytotoxicity and specificity of directed toxins composed of diphtheria toxin and the EGF-like domain of heregulin beta1. Biochemistry 37(9), 3220–3228.

    PubMed  CAS  Google Scholar 

  148. vanderSpek, J. C. and Murphy, J. R. (2000) Fusion protein toxins based on diphtheria toxin: selective targeting of growth factor receptors of eukaryotic cells. Methods Enzymol. 327, 239–249.

    PubMed  CAS  Google Scholar 

  149. Francis, J. W., et al. (2000) Enhancement of diphtheria toxin potency by replacement of the receptor binding domain with tetanus toxin C-fragment: a potential vector for delivering heterologous proteins to neurons. J. Neurochem. 74(6), 2528–2536.

    PubMed  CAS  Google Scholar 

  150. Fisher, C. E., et al. (1996) Genetic construction and properties of a diphtheria toxin-related substance P fusion protein: in vitro destruction of cells bearing substance P receptors. Proc. Natl. Acad. Sci. USA 93(14), 7341–7345.

    PubMed  CAS  Google Scholar 

  151. Arora, N., et al. (1994) Cytotoxic effects of a chimeric protein consisting of tetanus toxin light chain and anthrax toxin lethal factor in non-neuronal cells. J. Biol. Chem. 269(42), 26,165–26,171.

    PubMed  CAS  Google Scholar 

  152. Arora, N. and Leppla, S. H. (1994) Fusions of anthrax toxin lethal factor with shiga toxin and diphtheria toxin enzymatic domains are toxic to mammalian cells. Infect. Immun. 62(11), 4955–4961.

    PubMed  CAS  Google Scholar 

  153. Walev, I., et al. (2001) Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O. Proc. Natl. Acad. Sci USA 98(6), 3185–3190.

    PubMed  CAS  Google Scholar 

  154. Ohno, M., et al. (1998) Molecular evolution of snake toxins: is the functional diversity of snake toxins associated with a mechanism of accelerated evolution? Prog. Nucleic Acid Res. Mol. Biol. 59, 307–364.

    PubMed  CAS  Google Scholar 

  155. Le Du, M. H., et al. (2000) Stability of a structural scaffold upon activity transfer: X-ray structure of a three fingers chimeric protein. J. Mol. Biol. 296(4), 1017–1026.

    PubMed  CAS  Google Scholar 

  156. Harel, M., et al. (1995) Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure 3(12), 1355–1366.

    PubMed  CAS  Google Scholar 

  157. Meves, H., Simard, J. M., and Watt, D. D. (1986) Interactions of scorpion toxins with the sodium channel, in Tetrodotoxin, Saxitoxin, and The Molecular Biology of the Sodium Channel (Yao, C. Y. and Levinson, S. R., eds.), The New York Academy of Sciences, New York, NY, pp. 113–132.

    Google Scholar 

  158. Zilberberg, N., et al. (1996) Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry 35(31), 10,215–10,222.

    PubMed  CAS  Google Scholar 

  159. Bouhaouala-Zahar, B., et al. (2000) A chimeric scorpion alpha-toxin displays de novo electrophysiological properties similar to those of alpha-like toxins. Eur. J. Biochem. 269(12), 2831–2841.

    Google Scholar 

  160. Olivera, B. M., et al. (1985) Peptide neurotoxins from fish-hunting cone snails. Science 230(4732), 1338–1343.

    PubMed  CAS  Google Scholar 

  161. Broomfield, C. A., Lockridge, O., and Millard, C. B. (1999) Protein engineering of a human enzyme that hydrolyzes V and G nerve agents: design, construction and characterization. Chem. Biol. Interact. 119–120, 413–418.

    PubMed  Google Scholar 

  162. Sun, H., et al. (2002) Cocaine metabolism accelerated by a re-engineered human butyrylcholinesterase. J. Pharmacol. Exp. Ther. 302(2), 710–716.

    PubMed  CAS  Google Scholar 

  163. Lacy, D. B. and Stevens, R. C. (1998) Unraveling the structures and modes of action of bacterial toxins. Curr. Opin. Struct. Biol. 8(6), 778–784.

    PubMed  CAS  Google Scholar 

  164. Gerstein, M. (2000) Integrative database analysis in structural genomics. Nat. Struct. Biol. 7(Suppl.), 960–963.

    PubMed  CAS  Google Scholar 

  165. Gerstein, M., et al. (2003) Structural genomics: current progress. Science 299(5613), 1663.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Millard, C.B. (2005). Medical Defense Against Protein Toxin Weapons. In: Lindler, L.E., Lebeda, F.J., Korch, G.W. (eds) Biological Weapons Defense. Infectious Disease. Humana Press. https://doi.org/10.1385/1-59259-764-5:255

Download citation

  • DOI: https://doi.org/10.1385/1-59259-764-5:255

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-184-4

  • Online ISBN: 978-1-59259-764-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics