Skip to main content

Pharmacological Resuscitation Interventions

  • Chapter
Cardiopulmonary Resuscitation

Abstract

The primary goal of cardiopulmonary resuscitation (CPR) is to restore spontaneous circulation and manage postresuscitation myocardial dysfunction, including myocardial contractile failure and life-threatening ventricular ectopic dysrhythmias. During CPR, blood flow is determined primarily by two issues: the pump (driving force) and the peripheral vascular resistance. The mechanical interventions are intended to generate maximal cardiac output and perfusion pressure. A second issue is that of vascular tone. Accumulation of metabolic vasodilator substances, including adenosine, carbon dioxide, lactic acid, and hydrogen ions, and diminished neurovascular vasoconstriction decrease peripheral arterial resistance by causing (or allowing) arterial vasodilation. Additionally, there are variable increases in venous capacitance such that venous return to the right atrium is reduced. This has been the basis for the use of vasopressor agents, especially α-adrenergic agents. Quite distinct, however, is immediate postresuscitation management, which has as a primary goal the mitigation of postresuscitation myocardial failure. Pharmacological interventions are designed to improve myocardial systolic function by increasing stroke volume, reducing ventricular filling pressures, and controlling arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Emerman CL, Pinchak AC, Hancock D, Hagen JF. Effect of injection site on circulation times during cardiac arrest. Crit Care Med 1988; 16:1138–1141.

    Article  PubMed  CAS  Google Scholar 

  2. Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol 1948; 153:586–600.

    CAS  PubMed  Google Scholar 

  3. Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA. Structure and function of G protein-coupled receptors. Ann Rev Biochem 1994; 63:101–132.

    Article  PubMed  CAS  Google Scholar 

  4. Bylund DB: Subtypes of a1-and a2-adrenergic receptors. FASEB J 1992; 6:832–839.

    PubMed  CAS  Google Scholar 

  5. Cai JJ, Morgan DA, Haynes WG, Martins JB, Lee HC. Alpha2-adrenergic stimulation is protective against ischemia-reperfusion-induced ventricular arrhythmias in vivo. 2002; 283:H2606–H2611.

    CAS  Google Scholar 

  6. Emorine LJ, Marullo S, Briend-Sutren MM, et al. Molecular characterization of the human β3-adrenergic receptor. Science 1989; 245:1118–1121.

    Article  PubMed  CAS  Google Scholar 

  7. Schoming A, Richardt G, Kurz T: Sympatho-adrenergic activation of the ischemic myocardium and its arrhythmogenic impact. Herz 1995; 20:169–186.

    Google Scholar 

  8. Ihl-Vahl R, Marquetant R, Bremerich J, Strasser RH. Regulation of beta-adrenergic receptors in acute myocardial ischemia: subtype-selective increase of mRNA specific for beta1-adrenergic receptors. J Mol Cell Cardiol 1995; 27:437–452.

    PubMed  CAS  Google Scholar 

  9. Brown CG, Martin DR, Pepe PE, et al. A comparison of standard-dose and high-dose epinephrine in cardiac arrest outside the hospital. N Engl J Med 1992; 327:1051–1055.

    Article  PubMed  CAS  Google Scholar 

  10. Callaham ML, Madsen CD, Barton CW, Saunders CR, Pointer J. A randomized clinical trial of high-dose epinephrine and norepinephrine vs standard-dose epinephrine in prehospital cardiac arrest. JAMA 1992; 268: 2667–2672.

    Article  PubMed  CAS  Google Scholar 

  11. Sun S, Weil MH, Tang W, Kamohara T, Klouche K. Alpha-methylnorepinephrine, a selective alpha2-adrenergic agonist for cardiac resuscitation. J Am Coll Cardiol 2001; 37:951–956.

    Article  PubMed  CAS  Google Scholar 

  12. Brown CG, Katz SE, Werman HA, Luu T, Davis EA, Hamlin RL. The effect of epinephrine versus methoxamine on regional myocardial blood flow and defibrillation rates following a prolonged cardiorespiratory arrest in a swine model. Am J Emerg Med 1987; 5:362–369.

    Article  PubMed  CAS  Google Scholar 

  13. Brown CG, Davis EA, Werman HA, Hamlin RL. Methoxamine versus epinephrine on regional cerebral blood flow during cardiopulmonary resuscitation. Crit Care Med 1987; 15:682–686.

    PubMed  CAS  Google Scholar 

  14. Tang W, Weil MH, Sun SJ, Noc M, Yang L, Gazmuri RJ. Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 1995; 92:3089–3093.

    PubMed  CAS  Google Scholar 

  15. Marn-Pernat A, Weil MH, Tang W, Pernat A, Bisera J. Optimizing timing of ventricular defibrillation. Crit Care Med 2001: 29:2360–2365.

    Article  PubMed  CAS  Google Scholar 

  16. Povoas H, Weil MH, Tang W, Bisera J, Klouche K, Barbatsis A. Predicting the success of defibrillation by electrocardiographic analysis. Resuscitation 2002; 53:77–82.

    Article  PubMed  Google Scholar 

  17. Tang W, Weil MH, Gazmuri RJ, Sun S, Duggal C, Bisera J. Pulmonary ventilation/perfusion defects induced by epinephrine during cardiopulmonary resuscitation. Circulation 1991; 84:2101–2107.

    PubMed  CAS  Google Scholar 

  18. Sun S, Weil MW, Tang W, Povoas HP. Combined effects of buffer and adrenergic agents on postresuscitation myocardial function. J Pharmacol Exp Ther 1999; 291:773–777.

    PubMed  CAS  Google Scholar 

  19. Ralston SH, Tacker WA, Showen L, Carter A, Babbs CF. Endotracheal versus intravenous epinephrine during electromechanical dissociation with CPR in dogs. Ann Emerg Med 1985; 14:1044–1048.

    Article  PubMed  CAS  Google Scholar 

  20. Stiell IG, Herbert PC, Weitzman BN, et al: High-dose epinephrine in adult cardiac arrest. N Engl J Med 1992; 327:1045–1050.

    Article  PubMed  CAS  Google Scholar 

  21. AHA Guidelines 2000 for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 2000; 8(Suppl):I–129.

    Google Scholar 

  22. Ditchey RV, Lindenfeld J. Failure of epinephrine to improve the balance between myocardial oxygen supply and demand during closed-chest resuscitation in dogs. Circulation 1988; 78:382–389.

    PubMed  CAS  Google Scholar 

  23. Lindner KH, Ahnefeld FW, Schuermann W, Bowdler IM. Epinephrine and norepinephrine in cardiopulmonary resuscitation. Effects on myocardial oxygen delivery and consumption. Chest 1990; 97: 1458–1462.

    Article  PubMed  CAS  Google Scholar 

  24. Lindner KH, Ahnefeld FW, Pfenninger EG, Schuermann W, Bowdler IM. Effects of epinephrine and norepinephrine on cerebral oxygen delivery and consumption during open-chest CPR. Ann Emerg Med 1990; 19:249–254.

    Article  PubMed  CAS  Google Scholar 

  25. Lindner KH, Ahnefeld FW, Grunert A. Epinephrine versus norepinephrine in pre-hospital ventricular fibrillation. Am J Cardiol 1991; 67:427–428.

    Article  PubMed  CAS  Google Scholar 

  26. Redding JS, Pearson JW. Evaluation of drugs for cardiac resuscitation. Anesthesiology 1963; 24: 203–207.

    Article  PubMed  CAS  Google Scholar 

  27. Brillman JA, Sanders AB, Otto CW, Fahmy H, Bragg S, Ewy GA. Outcome of resuscitation from fibrillatory arrest using epinephrine and phenylephrine in dogs. Crit Care Med 1985; 13:912–913.

    Article  PubMed  CAS  Google Scholar 

  28. Brown CG, Taylor RB, Werman HA, Luu T, Ashton J, Hamlin RL. Myocardial oxygen delivery/consumption during cardiopulmonary resuscitation: a comparison of epinephrine and phenylephrine. Ann Emerg Med 1988; 17: 302–308.

    Article  PubMed  Google Scholar 

  29. Ditchey RV, Rubio-Perez A, Slinker BK. Beta-adrenergic blockade reduces myocardial injury during experimental cardiopulmonary resuscitation. J Am Coll Cardiol 1994; 24:804–812.

    Article  PubMed  CAS  Google Scholar 

  30. Silfvast T, Saarnivaara L, Kinnunen A, et al. Comparison of adrenaline and phenylephrine in out-of-hospital cardiopulmonary resuscitation. A double-blind study. Acta Anaesthesiol Scand 1985; 29:610–613.

    Article  PubMed  CAS  Google Scholar 

  31. Lindner KH, Haak T, Keller A, Bothner U, Lurie KG. Release of endogenous vasopressors during and after cardiopulmonary resuscitation. Br Heart J 1996; 75:145–150.

    Article  CAS  Google Scholar 

  32. Lindner KH, Prengel AW, Pfenninger EG, et al: Vasopressin improves vital organ blood flow during closed-chest cardiopulmonary resuscitation in pigs. Circulation 1995; 91:215–221.

    PubMed  CAS  Google Scholar 

  33. Lindner KH, Prengel AW, Brinkmann A, Strohmenger HU, Lindner IM, Lurie KG. Vasopressin administration in refractory cardiac arrest. Ann Int Med 1996; 124:1061–1064.

    PubMed  CAS  Google Scholar 

  34. Prengel AW, Lindner KH, Keller A, Lurie KG. Cardiovascular function during the post-resuscitation phase after cardiac arrest in pigs: A comparison of epinephrine versus vasopressin. Crit Care Med 1996; 24: 2014–2019.

    Article  PubMed  CAS  Google Scholar 

  35. Lindner KH, Dirks B, Strohmenger HU. Randomized comparison of epinephrine and vasopressin in patients with out-of-hospital ventricular fibrillation. Lancet 1997; 349:535–537.

    Article  PubMed  CAS  Google Scholar 

  36. Wenzel V, Krismer AC, Arntz HR, Sitter H, Stadbauer KH, Lindner KH. A comparison of vasopressin and epinephrine for out-of-hospital cardiopulmonary resuscitation. N Engl J Med 2004; 350(2):105–113.

    Article  PubMed  CAS  Google Scholar 

  37. Lindner KH, Prengel AW, Pfenninger EG, Lindner IM. Angiotensin II augments reflex activity of the sympathetic nervous system during cardiopulmonary resuscitation in pigs. Circulation 1995; 92: 1020–1025.

    PubMed  CAS  Google Scholar 

  38. Lindner KH, Prengel AW, Pfenninger EG, Lindner IM. Effect of angiotensin II on myocardial blood flow and acid-base status in a pig model of cardiopulmonary resuscitation. Anesth Analg 1993; 76:485–492.

    Article  PubMed  CAS  Google Scholar 

  39. Little CM, Brown CG: Angiotensin II improves myocardial blood flow in cardiac arrest. Resuscitation 1993; 26:203–210.

    Article  PubMed  CAS  Google Scholar 

  40. Vaughan Williams EM. Classifying antiarrhythmic actions: by facts or speculation. J Clin Pharmacol 1993; 32:964–977.

    Google Scholar 

  41. Balser JR, Nuss HB, Orias DW, et al. Local anesthetics as effectors of allosteric gating. Lidocaine effects on inactivation-deficient rat skeletal muscle Na channels. J Clin Invest 1996; 98:2874–2886.

    Article  PubMed  CAS  Google Scholar 

  42. Lie KI, Wellens HJ, van Capelle FJ, Durrer D. Lidocaine in the prevention of primary ventricular fibrillation. A double-blind randomized study of 212 consecutive patients. N Eng J Med 1974; 291: 1324–1326.

    Article  CAS  Google Scholar 

  43. Hine LK, Laird N, Hewitt P, Chalmers TC. Meta-analytic evidence against prophylactic use of lidocaine in acute myocardial infarction. Arch Intern Med 1989; 149:2694–2698.

    Article  PubMed  CAS  Google Scholar 

  44. Levine JH, Moore EN, Kadish AH, et al. Mechanisms of depressed conduction from long-term amiodarone therapy in canine myocardium. Circulation 1988; 78:684–691.

    PubMed  CAS  Google Scholar 

  45. Kudenchuk PJ, Cobb LA, Copass MK, et al. Amiodarone for resuscitation after out-of-hospital cardiac arrest due to ventricular fibrillation. N Engl J Med 1999; 341:871–878.

    Article  PubMed  CAS  Google Scholar 

  46. Dorian P, Cass D, Schwartz B, Cooper R, Gelaznikas R, Barr A. Amiodarone as compared with lidocaine for shock-resistant ventricular fibrillation. N Engl J Med 2002; 346:884–890.

    Article  PubMed  CAS  Google Scholar 

  47. Jude JR, Kouwenhoven WB, Knickerbocker GG. Cardiac arrest: report of application of external cardiac massage on 118 patients. JAMA 1961; 178:1063–1070.

    PubMed  CAS  Google Scholar 

  48. Von Planta M, Weil MH, Gazmuri RJ, Rackow EC. Myocardial acidosis associated with CO2 production during cardiac arrest. Circulation 1989; 80:684–692.

    Google Scholar 

  49. Kette F, Weil MH, von Planta M, Gazmuri RJ, Rackow EC. Buffer agents do not reverse intramyocardial acidosis during cardiac resuscitation. Circulation 1990; 81:1660–1666.

    PubMed  CAS  Google Scholar 

  50. Bleske BE, Warren EW, Rice TL, Gilligan LJ, Tait AR. Effect of high-dose sodium bicarbonate on the vasopressor effects of epinephrine during cardiopulmonary resuscitation. Pharmacotherapy 1995; 15: 660–664.

    PubMed  CAS  Google Scholar 

  51. Vukmir RB, Bircher NG, Radovsky A, Safar P. Sodium bicarbonate may improve outcome in dogs with brief or prolonged cardiac arrest. Crit Care Med 1995; 23:515–522.

    Article  PubMed  CAS  Google Scholar 

  52. Tang W, Weil MH, Gazmuri RJ. Sun S, Bisera J, Rackow E. Buffer agents ameliorate the myocardial depressant effect of carbon dioxide. Crit Care Med 1990; 18:S182.

    Article  Google Scholar 

  53. Sun SJ, Weil MH, Tang W, Fukui M. Effects of buffer agents on post-resuscitation myocardial dysfunction. Crit Care Med 1996; 24:2036–2041.

    Google Scholar 

  54. Bjerneroth G. Alkaline buffers for correction of metabolic acidosis during cardiopulmonary resuscitation with focus on Tribonat — a Review. Resuscitation 1998; 37:161–171.

    Article  PubMed  CAS  Google Scholar 

  55. Lomasney JW, Cotecchia S, Leftkowitz RJ, Caron MG. Molecular biology of a-adrenergic receptors: implications for receptor classification and for structure-function relationships. Biochim Biophys Acta 1991; 1095: 127–139.

    Article  PubMed  CAS  Google Scholar 

  56. Link RE, Desai K, Hein L, et al. Cardiovascular regulation in mice lacking a2-adrenergic receptor subtypes b and c. Science 1996; 273:803.

    Article  PubMed  CAS  Google Scholar 

  57. Kable JW, Murrin LC, Bylund DB. In vivo gene modification elucidates subtype-specific function of a2-adrenergic receptors. J Pharmacol Exper Ther 2000; 293:1.

    CAS  Google Scholar 

  58. Gavras I, Gavras H. Role of alpha2-adrenergic receptors in hypertension. 1: Am J Hypertens 2001; 14(Pt 2):171S.

    Article  PubMed  CAS  Google Scholar 

  59. Ishibashi Y, Duncker DJ, Bache RJ. Endogenous nitric oxide masks alpha2-adrenergic coronary vasoconstriction during exercise in the ischemic heart. Circ Res 1997; 80:196.

    PubMed  CAS  Google Scholar 

  60. Klouche K, Weil MH, Tang W, Povoas H, Kamohara T, Bisera J. A selective α-adrenergic agonist for cardiac resuscitation. J Lab Clin Med 2002; 140:27–34.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Tang, W., Sun, S., Weil, M.H. (2005). Pharmacological Resuscitation Interventions. In: Ornato, J.P., Peberdy, M.A. (eds) Cardiopulmonary Resuscitation. Contemporary Cardiology. Humana Press. https://doi.org/10.1385/1-59259-814-5:287

Download citation

  • DOI: https://doi.org/10.1385/1-59259-814-5:287

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-283-4

  • Online ISBN: 978-1-59259-814-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics