Skip to main content

Cyclin-Dependent Kinase Inhibitors in Combination Chemotherapy

  • Chapter
Combination Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 539 Accesses

Abstract

Cyclin-dependent kinase inhibitors (CDKIs) represent a new class of anticancer therapeutics. Perturbations in the cell cycle are commonly described in carcinogenesis. This novel class of anticancer therapeutics exploits these perturbations to achieve tumor-specific cytotoxicity. In the last several years, our understanding of cell-cycle regulation has improved with the emerging concepts of cell-cycle-mediated drug resistance and cell-cycle modulation to improve cytotoxic drug efficacy. It is becoming increasingly apparent that CDKIs may improve cytotoxic drug efficacy by functioning as cell-cycle modulators. In this chapter, we review the field of CDKIs as novel anticancer therapeutics, with a focus on their efficacy in drug combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13(12):1501–1512.

    PubMed  CAS  Google Scholar 

  2. Grana X, Reddy EP. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995;11:211–219.

    PubMed  CAS  Google Scholar 

  3. Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Ann Rev of Pharmacol & Toxicol 1999;39:295–312.

    CAS  Google Scholar 

  4. Kaldis P, Russo AA, Chou HS, et al. Human and yeast cdk-activating kinases (CAKs) display distinct substrate specificities. Mol Biol Cell 1998;9(9):2545–2560.

    PubMed  CAS  Google Scholar 

  5. Pardee AB. A restriction point control for normal animal cell proliferation. Proc Natl Acad Sci USA 1974;71:1286–1290.

    PubMed  CAS  Google Scholar 

  6. Malumbres M, Barbacid M. To cycle or not to cycle: A critical decision in cancer. Nat Cancer Revs 2001;1(3):222–231.

    CAS  Google Scholar 

  7. Sherr CJ. The Pezcoller Lecture: cancer cell cycles revisited. Cancer Res 2000;60:3689–3695.

    PubMed  CAS  Google Scholar 

  8. Elledge SJ, Harper JW. The role of protein stability in the cell cycle and cancer. Biochim Biophys Acta 1998;1377:M61–70.

    PubMed  CAS  Google Scholar 

  9. Ford HL, Pardee AB. The S-phase: beginning, middle, and end: a perspective. J Cell Biochem 1998;30/31 (Suppl):1–7.

    Google Scholar 

  10. Zhou BS, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000;408:433–439.

    PubMed  CAS  Google Scholar 

  11. Xu B, Kim S-T, Kastan MB. Involvement of BRCA1 in S-phase and G2-phase checkpoints after ionizing radiation. Mol Cell Biol 2001;21:3445–3450.

    PubMed  CAS  Google Scholar 

  12. Falck J, Mailand N, Syljuasen RG, et al. The ATM-Chk2-Cdc25A checkpoint pathway gaurds against radioresistant DNA synthesis. Nature 2001;410:842–847.

    PubMed  CAS  Google Scholar 

  13. Zhou X, Wang X, Hu B, et al. An ATM-independent S phase checkpoint response involves Chk1 pathway. Cancer Res 2002;62:1598–1603.

    PubMed  CAS  Google Scholar 

  14. Ford HL, Pardee, AB. Cancer and the cell cycle. J Cell Biochem 1999;32/33 Suppl:166–172.

    PubMed  Google Scholar 

  15. Anderson SSL. Spindle assembly and the art of regulating microtubule dynamics by MAPs and stathmin/Op18. Trends Cell Biol 2000;10:261–267.

    Google Scholar 

  16. Rudner AD, and Murray AW. The spindle assembly checkpoint. Curr Opin Cell Biol 1996;8:773–80.

    PubMed  CAS  Google Scholar 

  17. Nicklas RB. How cells get the right chromosome. Science 1997;275:632–637.

    PubMed  CAS  Google Scholar 

  18. Reed JC, Bischoff JR. Ringing chromosomes through cell division—and survivin’ the experience. Cell 2000;102:545–548.

    PubMed  CAS  Google Scholar 

  19. Altieri DC. The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med 2001;7:542–547.

    PubMed  CAS  Google Scholar 

  20. O’Connor DS, Wall NR, Porter ACG, et al. A p34cdc2 survival checkpoint in cancer. Cancer Cell 2002;2:43–54.

    PubMed  CAS  Google Scholar 

  21. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994;266:1821–1828.

    PubMed  CAS  Google Scholar 

  22. Harper J, Elledge SJ. Cdk inhibitors in develpment and cancer. Curr Opin Genet Dev 1996;6:56–64.

    PubMed  CAS  Google Scholar 

  23. Chen Y-N, Sharma SK, Ramsey TM, et al. Selective killing of transformed cells by cyclin/cyclin-dependent kinase 2 antagonists. Proc Natl Acad Sci USA 1999;96:4325–4329.

    PubMed  CAS  Google Scholar 

  24. Senderowicz AM. Cyclin-dependent kinases as targets for cancer therapy. In: (Giaccone G, Schilsky R, Sondel G, eds), Cancer Chemotherapy and Biological Response Modifiers, Annual 20. Elsevier Science, Amsterdam: 2002;169–188.

    Google Scholar 

  25. Losiewicz MD, Carlson BA, Kaur G, et al. Potent inhibition of cdc2 kinase activity by the flavonoid L86-8275. Biochem Biophys Res Commun 1994;201:589–595.

    PubMed  CAS  Google Scholar 

  26. Carlson BA, Dubay MM, Sausville EA, et al. Flavopiridol induces G1 arrest with inhibition of cyclin-dependent kinase CDC2 and CDK4 in human breast carcinoma cells. Cancer Res 1996;56:2973–2978.

    PubMed  CAS  Google Scholar 

  27. Carlson BA, Pearlstein RA, Naik RG, et al. Inhibition of CDK2, CDK4 and CDK7 by flavopiridol and structural anologs. Proc Am Assoc Cancer Res 1996;36.

    Google Scholar 

  28. Dumant JA. HMR Report No. B/98/0189/R, B/98/0188/R, 8/98/0187/R. HMR Oncology 1996.

    Google Scholar 

  29. Konig A, Schwartz GK, Mohammad RM, et al. The novel cyclin-dependent kinase inhibitor flavopiridol downregulates Bcl-2 and induces growth arrest and apoptosis in chronic B-cell leukemia cell lines. Blood 1997;90:4307–4312.

    PubMed  CAS  Google Scholar 

  30. Byrd JC, Shinn, C, Waselenko JK, et al. Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bcl-2 modulation or dependence of functional p53. Blood 1998;92:3804–3816.

    PubMed  CAS  Google Scholar 

  31. Arguello F, Alexander M, Sterry JA, et al. Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity in vivo against human leukemia and lymphoma xenografts. Blood 1998;91:2482–2490.

    PubMed  CAS  Google Scholar 

  32. Cartee L, Wang Z, Decker RH, et al. The cyclin-dependent kinase inhibitor (CDKI) Flavopiridol disrupts phorbol 12-myristate 13-acetate-induced differentiation and CDKI expression while enhancing apoptosis in human myeloid leukemia cells. Cancer Res 2001;61(6):2583–2591.

    PubMed  CAS  Google Scholar 

  33. Bible KC, Kaufmann SH. Flavopiridol: a cytotoxic flavone that induces cell death in noncycling A549 human lung carcinoma cells. Cancer Res 1996;56(21):4856–4861.

    PubMed  CAS  Google Scholar 

  34. Schrump DS, Mathews W, Chen GA, et al. Flavopiridol mediates cell cycle arrest and apoptosis in esophageal cancer cell lines. Clin Cancer Res 1998;4:2885–2890.

    PubMed  CAS  Google Scholar 

  35. Carlson B, Lahusen T, Singh S, et al. Down-regulation of cyclin D1 by transcriptional repression in MCF-7 human breast carcinoma cells induced by flavopiridol. Cancer Res 1999;59(18):4634–4641.

    PubMed  CAS  Google Scholar 

  36. Drees M, Dengler WA, Roth T, et al. Flavopiridol (L86-8275): selective antitumor activity in vitro and activity in vivo for prostate carcinoma cells. Clin Cancer Res 1997;3(2):271–279.

    Google Scholar 

  37. Patel V, Senderowicz AM, Pinto, D, et al. Flavopiridol, a novel cyclin-dependent kinase inhibitor, suppresses the growth of head and neck squamous cell carcinomas by inducing apoptosis. J Clin Invest 1998;102(9):1674–1681.

    PubMed  CAS  Google Scholar 

  38. Thomas JP, Tutsch KD, Cleary JF, et al. Phase I clinical and pharmacokinetic trial of cyclin-dependent kinase inhibitor flavopiridol. Cancer Chemother Pharmacol 2002;50:465–472.

    PubMed  CAS  Google Scholar 

  39. Senderowicz AM, Headlee D, Stinson SF, et al. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J Clin Oncol 1998;16(9):2986–2999.

    PubMed  CAS  Google Scholar 

  40. Stadler WM, Vogelzang NJ, Amato R, et al. Flavopiridol, a novel cyclin-dependent kinase inhibitor, in metastatic renal cancer: a University of Chicago Phase II Consortium study. J Clin Oncol 2000;18(2):371–375.

    PubMed  CAS  Google Scholar 

  41. Shapiro GI, Patterson A, Lynch C, et al. A phase II trial of flavopiridol in patients with stage IV non-small cell lung cancer. Proc Amer Soc Clin Oncol 1999: Abstract 2013.

    Google Scholar 

  42. Schwartz GK, Ilson D, Saltz L, Howard OM, Neuberg DS, et al. Phase II study of the cyclin-dependent kinase inhibitor flavopiridol administered to patients with advanced gastric carcinoma. J Clin Oncol 2001;19(7):1985–1992.

    PubMed  CAS  Google Scholar 

  43. Lin TS, Howard OM, Neuberg DS, et al. Seventy-two hour continuous infusion flavopiridol in relapsed and refractory mantle cell lymphoma. Leuk Lymphoma 2002;43(4):793–797.

    PubMed  CAS  Google Scholar 

  44. Burdette-Radoux S, Tozer RG, Lohmann R, et al. NCIC CTG phase II study of flavopiridol in patients with previously untreated metastatic malignant melanoma. Proc Amer Soc Clin Oncol 2002;Abstract 1382.

    Google Scholar 

  45. Bennett P, Mani S, O’Reilly S, et al. Phase II trial of flavopiridol in metastatic colorectal cancer: preliminary results. Proc Amer Soc of Clin Oncol 1999;Abstract 1065.

    Google Scholar 

  46. Takahashi I, Saitoh Y, Yoshida M. UCN-01 and UCN-02, new selective inhibitors of protein kinase C. Purification, physico-chemical properties, structural determination and biological activities. J Antibiot 1989;42:571–576.

    PubMed  CAS  Google Scholar 

  47. Tamoaki T, Nakano H. Potent and specific inhibitors of PKC of microbial origin. Biotech 1990;8:732–735.

    Google Scholar 

  48. Seynaeve CM, Stetter-Stevenson M, Sebers S, et al. Cell cycle arrest and growth inhibition by the protein kinase antagonist UCN-01 in human breast carcinoma cells. Cancer Res 1993;53(9):2081–2086.

    PubMed  CAS  Google Scholar 

  49. Akinaga S, Nomura K, Gomik, et al. Effect of UCN-01, a selective inhibitor of protein kinase C, on the cell-cycle distribution of human epidermoind carcinoma, A431 cells. Cancer Chemother Pharmacol 1994;33(4):273–280.

    PubMed  CAS  Google Scholar 

  50. Kawakami K, Futami H, Takahara J, et al. UCN-01, 7-hydroxylstaurosporine, inhibits kinase activity of cyclin-dependent kinases and reduces the phosphorylation of the retinoblastoma susceptibility gene product in A549 human lung cancer cell line. Biochem Biophys Res Commun 1996;219(3):778–783.

    PubMed  CAS  Google Scholar 

  51. Akiyama T, Yoshida T, Tsujita T, et al. G1 phase accumulation induced by UCN-01 is associated with dephosphorylation of Rb and CDK2 proteins as well as the induction of CDK inhibitor p21/CIP/WAF1/Sdi1 in p53-mutated human epidermoid carcinoma A431 cells. Cancer Res 1997;57(8):1495–1501.

    PubMed  CAS  Google Scholar 

  52. Fan G, Steer CJ. The retinoblastoma gene product is a negative modulator of the apoptotic pathway. Adv Enzyme Regul 1996;36:283–303.

    PubMed  CAS  Google Scholar 

  53. Hsueh CT, Kelsen D, Schwartz GK. UCN-01 suppresses thymidylate synthase gene expression and enhances 5-fluorouracil-induced apoptosis in a sequence-dependent manner. Clin Cancer Res 1998;4(9):2201–2206.

    PubMed  CAS  Google Scholar 

  54. Graves PR, Yu L, Schwarz JK, et al. The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 2000;275(8):5600–5605.

    PubMed  CAS  Google Scholar 

  55. Busby EC, Leistritz DF, Abraham RT, et al. The radiosensitizing agent 7-hydroxystaurosporine (UCN-01) inhibits the DNA damage checkpoint kinase hChk1. Cancer Res 2000;60(8):2108–2112.

    PubMed  CAS  Google Scholar 

  56. Yu Q, Rose, JH, Zhang H, et al. UCN-01 inhibits p53 up-regulation and abrogates gamma-radiation-induced G2-M Checkpoint independently of p53 by targeting both of the checkpoint kinases, Chk2 and Chk1. Cancer Res 2002;62:5743–5748.

    PubMed  CAS  Google Scholar 

  57. Sausville EA, Lush RD, Headlee D, et al. Phase I trial of 72-hour continuous infusion of UCN-01 in patients with refractory neoplasms. J Clin Oncol 2001;19(8):2319–2333.

    PubMed  CAS  Google Scholar 

  58. Fuse E, Tanii H, Kurata N, et al. Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human alpha1-acid glycoprotein. Cancer Res 1998;58:3248–3253.

    PubMed  CAS  Google Scholar 

  59. Sausville EA, Lush RD, Headlee D, et al. Clinical pharmacology of UCN-01: initial observations and comparison to preclinical models. Cancer Chemother Pharmacol 1998;42(Suppl):S54–S59.

    PubMed  CAS  Google Scholar 

  60. Tamura T, Sasaki Y, Minami H, et al. Phase I study of UCN-01 by 3 hour infusion. Proc Amer Soc Clin Oncol 1999;18:159a.

    Google Scholar 

  61. Dees EC, O’Reilly S, Figg WD, et al. A phase I and pharmacologic study of UCN-01, a protein kinase C inhibitor. Proc Amer Soc Clin Oncol 2000;19:205a.

    Google Scholar 

  62. Mutter R, Wills M. Chemistry and clinical biology of the bryostatins. Bioorg Med Chem 2000;8:1841–1860.

    PubMed  CAS  Google Scholar 

  63. Wender PA, Cribbs CM, Koehler KF, et al. Modeling of the bryostatins to the phorbol ester pharmacophore on protein kinase C. Proc Natl Acad Sci USA 1988;85:7197–7201.

    PubMed  CAS  Google Scholar 

  64. Kraft AS, Smith JB, Berkow RL. Bryostatin, an activator of the calcium phospholipid-dependent protein kinase, blocks phorbol ester-induced differentiation of human promyelocytic leukemia cells HL-60. Proc Natl Acad Sci USA 1986;83:1334–1338.

    PubMed  CAS  Google Scholar 

  65. Hennings H, Blumberg PM, Pettit GR, et al. Bryostatin-1, an activator of protein kinase C inhibits tumor promotion by phorbol esters in Sencar mouse skin. Carcinogenesis 1987;9:1343–1346.

    Google Scholar 

  66. Isakov N, Galron D, Mustelin T, et al. Inhibition of phorbol ester-induced T cell proliferation by bryostatin is associated with rapid degradation of protein kinase C. J Immunol 1993;150(4):1195–1204.

    PubMed  CAS  Google Scholar 

  67. Lee HW, Smith L, Pettit GR, et al. Ubiquitination of protein kinase C-alpha and degradation by the proteasome. J Biol Chem 1996;271:20,973–20,976.

    PubMed  CAS  Google Scholar 

  68. Asiedu C, Biggs J, Lilly M, et al. Inhibition of leukemic cell growth by the protein kinase C activator bryostatin-1 correlates with the dephosphorylation of cyclin-dependent kinase 2.Cancer Res 1995;55:3716–3720.

    PubMed  CAS  Google Scholar 

  69. Vrana JA, Saunders AM, Chellappan SP, et al. Divergent effects of bryostatin 1 and phorbol myristate acetate on cell cycle arrest and maturation in human myelomonocytic leukemia cells (U937). Differentiation 1998;63:33–42.

    PubMed  CAS  Google Scholar 

  70. Vrana, JA, Kramer LB, Saunders AM, et al. Inhibition of protein kinase C activator-mediated induction of p21cip1 and p27kip1 by deoxycytidine analogs in human leukemia cells: relationship to apoptosis and differentiation. Biochem Pharmacol 1999;58:121–131.

    PubMed  CAS  Google Scholar 

  71. Koutcher JA, Motwani M, Dyke JP, et al. The in vitro effect of bryostatin-1 on paclitaxel-induced tumor growth, mitotic entry, and blood flow. Clin Cancer Res 2000;6:1498–1507.

    PubMed  CAS  Google Scholar 

  72. Hickman PF, Kemp GJ, Thompson CH, et al. Bryostatin 1, a novel antineoplastic agent and protein kinase C activator, induces human myalgia and muscle metabolic defects: a 31P magnetic resonance spectroscopic study. Br J Cancer 1995;72:998–1003.

    PubMed  CAS  Google Scholar 

  73. Prendiville J, Crowther D, Thatcher N, et al. A phase I study of intravenous bryostatin 1 in patients with advanced cancer. Br J Cancer 1993;68:418–424.

    PubMed  CAS  Google Scholar 

  74. Philip, PA, Rea D, Thavasu P, et al. Phase I study of bryostatin 1: assessment of interleukin 6 and tumor necrosis factor alpha induction in vivo. The Cancer Research Campaign Phase I Committee. J Natl Cancer Inst 1993;85:1812–1818.

    PubMed  CAS  Google Scholar 

  75. Jayson GC, Crowther D, Prendiville J, et al. A phase I trial of bryostatin 1 in patients with advanced malignancy using a 24-hour intravenous infusion. Br J Cancer 1995;72:461–468.

    PubMed  CAS  Google Scholar 

  76. Varterasian ML, Mohammad RM, Eilender DS, et al. Phase I study of bryostatin 1 in patients with relapsed non-Hodgkin’s lymphoma and chronic lymphocytic leukemia. J Clin Oncol 1998;16:56–62.

    PubMed  CAS  Google Scholar 

  77. Propper DJ, Macaulay V, O’Bryne KJ, et al. A phase II study of bryostatin 1 in metastatic malignant melanoma. Br J Cancer 1998;78:1337–1341.

    PubMed  CAS  Google Scholar 

  78. Gonzalez, R, Ebbinghaus S, Henthorn TK, et al. Treatment of patients with metastatic melanoma with bryostatin-1—a phase II study. Melanoma Res 1999;9:599–606.

    PubMed  CAS  Google Scholar 

  79. Bedikian AY, Plager C, Stewart JR, et al. Phase II evaluation of bryostatin-1 in metastatic melanoma. Melanoma Res 2001;11:183–188.

    PubMed  CAS  Google Scholar 

  80. Pagliaro L, Daliani D, Amato R, et al. A phase II trial of bryostatin-1 for patients with metastatic renal cell carcinoma. Cancer 2000;89:615–618.

    PubMed  CAS  Google Scholar 

  81. Zonder JA, Shields AF, Zalupski M, et al. A phase II trial of bryostatin 1 in the treatment of metastatic colorectal cancer. Clin Cancer Res 2001;7:38–42.

    PubMed  CAS  Google Scholar 

  82. Blackhall FH, Ranson M, Radford JA, et al. A phase II trial of bryostatin 1 in patients with non-Hodgkin’s lymphoma. Br J Cancer 2001;84:249–254.

    Google Scholar 

  83. Brockstein B, Samuels B, Humerickhouse R, et al. Phase II studies of bryostatin-1 in patients with advanced sarcoma and advanced head and neck cancer. Invest New Drugs 2001;19:249–254.

    PubMed  CAS  Google Scholar 

  84. Luria SE, Delbruck M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943;28:491.

    PubMed  CAS  Google Scholar 

  85. DeVita VT. Principles of cancer management: chemotherapy. In: (DeVita VT, Rosenberg SA, Hellman S, eds), Cancer: Principles and Practice of Oncology, Lippincott-Raven, Philadelphia: 1997;333-347.

    Google Scholar 

  86. Goldie JH, Coldman AJ. A model for tumor response to chemotherapy: an integration of the stem cell and somatic mutation hypotheses. Cancer Invest 1985;3(6):553–564.

    PubMed  CAS  Google Scholar 

  87. Goldie JH, Coldman AJ. A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treat Rep 1979;63(11-12):1727–1733.

    PubMed  CAS  Google Scholar 

  88. Ritke MK, Rusnak JM, Lazo JS, et al. Differential induction of etoposide-mediated apoptosis in human leukemia HL-60 and K562 cells. Mol Pharmacol 1994;46:605–611.

    PubMed  CAS  Google Scholar 

  89. Evans DL, Dive C. Effects of cisplatin on the induction of apoptosis in proliferating hepatoma cells and nonproliferating immature thymocytes. Cancer Res 1993;53:2133–2139.

    PubMed  CAS  Google Scholar 

  90. Elledge RM, Gray R, Mansour E, et al. Accumulation of p53 protein as a possible predictor of response to adjuvant combination chemotherapy with cyclophosphamide, methotrexate, fluorouracil, and prednisone for breast cancer. J Natl Cancer Inst 1995;87(16):1254–1256.

    PubMed  CAS  Google Scholar 

  91. Rusch V, Klimstra D, Venkatraman E, et al. Aberent p53 expression predicts clinical resistance to cisplatin-based chemotherapy in locally advanced non-small cell lung cancer. Cancer Res 1995;55:5038–5042.

    PubMed  CAS  Google Scholar 

  92. Eliopoulos AG, Kerr DJ, Herod J, et al. The control of apoptosis and drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene 1995;11:1217–1228.

    PubMed  CAS  Google Scholar 

  93. Righetti SC, Della Torre G, Pilotti S, et al. A comparative study of p53 gene mutations, protein accumulation and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res 1996;56(4):689–693.

    PubMed  CAS  Google Scholar 

  94. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 1972;26:239–257.

    PubMed  CAS  Google Scholar 

  95. Wyllie AH, Kerr JFR, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1990;68:251–306.

    Google Scholar 

  96. Dive C, Evans CA, Whetton AD. Induction of apoptosis-new targets of cancer chemotherapy. Semin Cancer Biol 1992;3:417–427.

    PubMed  CAS  Google Scholar 

  97. Reed JC. Dysregulation of apoptosis in cancer. J Clin Oncol 1999;117(9):2941–2953.

    Google Scholar 

  98. Vaux DL, Haecker G, Strasser A. An evolutionary perspective on apoptosis. Cell 1994;76:777–779.

    PubMed  CAS  Google Scholar 

  99. Stewart BW. Mechanisms of apoptosis: integration of genetic, biochemical, and cellular indicators. J Natl Cancer Inst 1994;86:1286–1296.

    PubMed  CAS  Google Scholar 

  100. Hockenbery D. Defining apoptosis. Am J Pathol 1995;146:16–19.

    PubMed  CAS  Google Scholar 

  101. Martin SJ, Green DR. Protease activation during apoptosis. Death by a thousand cuts? Cell 1995;82:349–352.

    PubMed  CAS  Google Scholar 

  102. Wyllie AH. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 1980. 284:555–556.

    PubMed  CAS  Google Scholar 

  103. Lazebnik YA, Takahashi A, Moir RD, et al. Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc Natl Acad Sci USA 1995;92:9042–9046.

    PubMed  CAS  Google Scholar 

  104. Kaufmann SH, Desnoyers S, Ottaviano Y, et al. Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 1993;53:3976–3985.

    PubMed  CAS  Google Scholar 

  105. Lazebnik YA, Kaufman SH, Desnoyers S, et al. Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994;371:346–347.

    PubMed  CAS  Google Scholar 

  106. Nicholson DW, Ali A, Thornberry NA, et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995;376:37–43.

    PubMed  CAS  Google Scholar 

  107. Neamati N, Fernandez A, Wright S, et al. Degradation of lamin B1 precedes oligonucleosomal DNA fragmentation in apoptotic thymocytes and isolated thymocyte nuclei. J Immunol 1994;154:3788–3795.

    Google Scholar 

  108. Seller WR, Fisher DE. Apoptosis and cancer drug targeting. J Clin Invest 1999;104(12):1655–1661.

    Google Scholar 

  109. Fisher, DE. Apoptosis in cancer therapy: crossing the threshold. Cell 1994;78:539–542.

    PubMed  CAS  Google Scholar 

  110. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer 1994;73:2013–2026.

    PubMed  CAS  Google Scholar 

  111. Bellamy CO, Malcolmson RD, Harrison DJ, et al. Cell death in health and disease: the biology and regulation of apoptosis. Semin Cancer Biol 1995;6:3–16.

    PubMed  CAS  Google Scholar 

  112. McDonnell TJ, Meyn RE, Robertson LE. Implications of apoptotic cell death regulation in cancer therapy. Semin Cancer Biol 1995;6:53–60.

    PubMed  CAS  Google Scholar 

  113. Eastman A. Survival factors, intracellular signal transduction, and the activation of endonucleases in apoptosis. Semin Cancer Biol 1995;6:45–52.

    PubMed  CAS  Google Scholar 

  114. Lowe SW, Ruley HE, Jact T, et al. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993;74:957–967.

    PubMed  CAS  Google Scholar 

  115. Nabeya Y, Loganzo F. Maslak P, et al. The mutational status of p53 protein in gastric and esophageal adenocarcinoma cell lines predicts sensitivity to chemotherapeutic agents. Int J Cancer 1994;64:1–10.

    Google Scholar 

  116. Ibardo AM, Huang Y, Fang G, et al. Bcl-xl overexpression inhibits taxol-induced yama protease activity and apoptosis. Cell Growth and Differ 1996;7:1087–1094.

    Google Scholar 

  117. Datta R, Manome Y, Taneja N, et al. Overexpression of Bcl-xl by cytotoxic drug exposure confers resistance to ionizing radiation-induced internucleosomal DNA fragmentation. Cell Growth and Differ 1995;6:363–370.

    CAS  Google Scholar 

  118. Gajewski TF, Thompson CB. Apoptosis meets signal transduction: elimination of a BAD influence. Cell 1996;87(4):589–592.

    PubMed  CAS  Google Scholar 

  119. Jarvis WD, Grant S. Protein kinase C targeting in antineoplastic treatment strategies. Invest New Drugs 1999;17(3):227–240.

    PubMed  CAS  Google Scholar 

  120. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88:323–331.

    PubMed  CAS  Google Scholar 

  121. El-Diery WS, Harper JW, O’Connor PM, et al. Waf1/Cip1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 1994;54:1169–1174.

    Google Scholar 

  122. Brugaralas J, Chandrasekaran C, Gordon JI, et al. Radiation-induced cell arrest compromised by p21 deficiency. Nature 1995;377:552–557.

    Google Scholar 

  123. Chan TA, Hwang PM, Hermeking J, et al. Cooperative effects of genes controling the G2/M checkpoint. Genes Dev 2000;14:1584–1588.

    PubMed  CAS  Google Scholar 

  124. Bunz F, Dutriaux A, Lengauer C, et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998;282:1497–1501.

    PubMed  CAS  Google Scholar 

  125. Bunz F, Hwang PM, Torrance C, et al. Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 1999;104(3):263–269.

    PubMed  CAS  Google Scholar 

  126. Yu J, Zhang L, Hwang PM, et al. Identification and classification of p53-regulated genes. Proc Natl Acad Sci USA 1999;96:14,517–14,522.

    PubMed  CAS  Google Scholar 

  127. Clarke AR, Gledhill S, Hooper ML, et al. p53 dependence of early apoptotic and proliferative responses within the mouse intestinal epithelium following gamma-irradiation. Oncogene 1994;9:1767–1773.

    PubMed  CAS  Google Scholar 

  128. Waldman T, Yongyang Y, Diollehay L, et al. Cell cycle arrest versus cell death in cancer therapy. Nat Med 1997;3:1034–1036.

    PubMed  CAS  Google Scholar 

  129. Shah MA, Schwartz GK. Cell Cycle mediated drug resistance: An emerging concept in cancer therapy. Clin Cancer Res 2001;7(8):2168–2181.

    PubMed  CAS  Google Scholar 

  130. Rowinsky EK. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu Rev Med 1997;48:353–374.

    PubMed  CAS  Google Scholar 

  131. Schiff PB, Fant J, and Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature 1979;277(5698):665–667.

    PubMed  CAS  Google Scholar 

  132. Schiff PB, Horwitz SB. Taxol assembles tubulin in the absence of exogenous guanosine 5′-triphosphate or microtubule-associated proteins. Biochemistry 1981;20(11):3247–3252.

    PubMed  CAS  Google Scholar 

  133. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci USA 1980;77(3):1561–1565.

    PubMed  CAS  Google Scholar 

  134. Yoo YD, Park JK, Choi JY, et al. CDK4 down-regulation induced by paclitaxel is associated with G1 arrest in gastric cancer cells. Clin Cancer Res 1998;4(12):3063–3068.

    PubMed  CAS  Google Scholar 

  135. Long BH, Fairchild CR. Paclitaxel inhibits progression of mitotic cells to G1 phase by interference with spindle formation without affecting other microtubule functions during anaphase and telephase. Cancer Res 1994;54(16):4355–4361.

    PubMed  CAS  Google Scholar 

  136. Brown T, Havlin K, Weiss G, et al. A phase I trial of taxol given by a 6-hour intravenous infusion. J Clin Oncol 1991;9(7):1261–1267.

    PubMed  CAS  Google Scholar 

  137. Donaldson KL, Goolsby GL, Kiener PA, Wahl AF. Activation of p34cdc2 coincident with taxol-induced apoptosis. Cell Growth Differ 1994;5(10):1041–1050.

    PubMed  CAS  Google Scholar 

  138. Ling YH, Yank Y, Cansoli U, et al. Accumulation of cyclin B1, activation of cyclin B1-dependent kinase and induction of programmed cell death in human epidermoid carcinoma KB cells treated with Taxol. Int J Cancer 1998;75:925–932.

    PubMed  CAS  Google Scholar 

  139. Clute P, Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1999;1:82–86.

    PubMed  CAS  Google Scholar 

  140. Yu D, Jing T, Liu B, et al. Overexpression of ErbB2 blocks taxol-induced apoptosis by upregulation of p21Cip1 which inhibits p34Cdc2 kinase. Mol Cell 1998;2:581–591.

    PubMed  CAS  Google Scholar 

  141. Donaldson KL, Goolsby GL, Wahl AF. Cytotoxicity of the anticancer agents cisplatin and taxol during cell proliferation and the cell cycle. Int J Cancer 1994;57(6):847–855.

    PubMed  CAS  Google Scholar 

  142. Blagosklonny MV, Giannakakou P, El-Deiry WS, et al. Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death. Cancer Res 1997;57(1):130–135.

    PubMed  CAS  Google Scholar 

  143. Chen CY, Faller DV Phosphorylation of Bcl-2 protein and association with p21Ras in Ras-induced apoptosis. J Biol Chem 1996;271(5):2376–2379.

    PubMed  CAS  Google Scholar 

  144. Blagosklonny MV, Fojo T. Molecular effects of paclitaxel: myths and reality (a critical review). Int J Cancer 1999;83(2):151–156.

    PubMed  CAS  Google Scholar 

  145. Trielli MO, Andreassen PR, Lacroix FB, et al. Differential Taxol-dependent arrest of transformed and nontransformed cells in the G1 phase of the cell cycle, and specific related mortality of transformed cells. J Cell Biol 1996;135:689–700.

    PubMed  CAS  Google Scholar 

  146. Wang T-H, Wang H-S, Soong Y-K. Paclitaxel-Induced cell death. Cancer 2000;88:2619–2628.

    PubMed  CAS  Google Scholar 

  147. Motwani M, Delohery TM, Schwartz GK. Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and breast cancer cells. Clin Cancer Res 1999;5(7):1876–1883.

    PubMed  CAS  Google Scholar 

  148. Kaubisch A, Kelsen DP, Saltz L, et al. A phase I trial of weekly sequential bryostatin (Bryo) and paclitaxel in patients with advanced solid tumors. Proc Amer Soc Clin Oncol 1999;18:Abstract 639.

    Google Scholar 

  149. Bible KC, Kaufmann SH. Cytotoxic synergy between flavopiridol (NSC 649890, L86-8275) and various antineoplastic agents: the importance of sequence of administration. Cancer Res 1997;57:3375–3380.

    PubMed  CAS  Google Scholar 

  150. Wang S, Wang Z, Boise L, et al. Loss of the bcl-2 phosphorylation loop domain increases resistance of human leukemia cells (U937) to paclitaxel-mediated mitochondrial dysfunction and apoptosis. Biochem Biophys Res Commun 1999;259(1):67–72.

    PubMed  CAS  Google Scholar 

  151. Schmitt E, Cimoli G, Steyaert A, et al. Bcl-xL modulates apoptosis induced by anticancer drugs and delays DEVDase and DNA fragmentation-promoting activities. Exp Cell Res 1998;240(1):107–121.

    PubMed  CAS  Google Scholar 

  152. Wang S, Wang Z, Boise LH, et al. Bryostatin-1 enhances paclitaxel induced mitochondrial dysfunction and apoptosis in human leukemia cells (U937) ectopically expressing Bcl-xl. Leukemia 1999;13(10):1564–1573.

    PubMed  CAS  Google Scholar 

  153. Wang S, Guo C, Castillo A, et al. Effect of bryostatin-1 on taxol-induced apoptosis and cytotoxicity in human leukemia cells (U937). Biochem Pharmacol 1998;56(5):635–644.

    PubMed  CAS  Google Scholar 

  154. Schwartz GK, O’Reilly E, Ilson D, et al. Phase I and pharmacokinetic study of paclitaxel followed by bryostatin-1 in patients with advanced solid tumors. J Clin Oncol 2001;20:257–2170.

    Google Scholar 

  155. Wall ME, Wani MC, Cook CE, et al. Plant anti-tumor agents 1. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 1966;88:3888–3890.

    CAS  Google Scholar 

  156. Slichenmeyer WJ, Rowinsky EK, Donehower RC, et al. The current status of camptothecin analogues as antitumor agents. JNCI 1993;85:271–291.

    Google Scholar 

  157. Li LH, Fraser TJ, Olin EJ, et al. Action of camptothecin on mammalian cells in culture. Cancer Res 1972;32(12):2643–2650.

    PubMed  CAS  Google Scholar 

  158. Creemers CJ, Lund B, Verwij J. Topoisomerase I inhibitors: topotecan and irinotecan. Cancer Treat Rev 1994;20:73–96.

    PubMed  CAS  Google Scholar 

  159. Hsiang Y-H, Hertzberg R, Hecht S, et al. Camptothecin induces protein-linked DNA breaks via mammalian Topoisomerase I. J Biol Chem 1985;260:14,873–14,878.

    PubMed  CAS  Google Scholar 

  160. Hsiang Y-H, Lihou MG, Liu F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by Camptotheicin. Cancer Res 1989;49:5077–5082.

    PubMed  CAS  Google Scholar 

  161. Sane AT, Bertrand R. Caspase inhibition in camptothecin-treated U-937 cells is coupled with a shift from apoptosis to transient G1 arrest followed by necrotic cell death. Cancer Res 1999;59(15):3565–3569.

    PubMed  CAS  Google Scholar 

  162. Tsao YP, D’Apra P, Liu LF. The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res 1992;52(7):1823–1829.

    PubMed  CAS  Google Scholar 

  163. Kohn EA, Ruth ND, Brown MK, et al. Abrogation of the S phase DNA damage checkpoint results in S phase progression of premature mitosis depending on the concentration of 7-hydroxystaurosporine and the kinetics of Cdc25C activation. J Biol Chem 2002;277(29):26,553–26,564.

    PubMed  CAS  Google Scholar 

  164. Weller M, Winter S, Schmidt C, et al. Topisomerase-I inhibitors for human malignant glioma: differential modulation of p53, p21, bax, and bcl-2 expression and of CD95-mediated apoptosis by camptothecin and beta-lapachone. Int J Cancer 1997;73(5):707–714.

    PubMed  CAS  Google Scholar 

  165. Shimizu T, O’Connor PM, Kohn KW, et al. Unscheduled activation of cyclin B1/cdc2 kinase in human promyelocytic leukemia cell line HL60 cells ungroing apoptosis induced by DNA damage. Cancer Res 1995;55:228–231.

    PubMed  CAS  Google Scholar 

  166. Saltz LB, Konowitz J, Kemeny NE, et al. Phase I clinical and pharmacokinetic study of irinotecan, fluorouracil, and leucovorin in patients with advanced solid tumors. J Clin Oncol 1996;14(11):2959–2967.

    PubMed  CAS  Google Scholar 

  167. Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal carcinoma. Irinotecan Study Group. New Engl J Med 2000;343(13):905–912.

    PubMed  CAS  Google Scholar 

  168. Saijo N. Clinical trials of irinotecan hydrochloride (CPT, campto injection, topotecan injection) in Japan. Ann NY Acad Sci 1996;803:292–305.

    PubMed  CAS  Google Scholar 

  169. Waldman T, Kinzler KW, Vogelstein B. P21 is necessary for the p53 mediated G1 arrest in human cancer cells. Cancer Res 1995;55:5187–5195.

    PubMed  CAS  Google Scholar 

  170. Motwani M, Jung C, Sirotnak FM, et al. Augmentation of apoptosis and tumor regressions by flavopiridol in the presence of CPT-11 in HCT116 colon cancer monolayers and xenografts. Clin Cancer Res 2001;7:4209–4219.

    PubMed  CAS  Google Scholar 

  171. Shah MA, Kortmansky J, Gonen M, et al. A phase I/pharmacologic study of weekly sequential irinotecan (CPT) and flavopiridol. Proc Am Soc Clin Oncol 2002: Abstract 373. Available at: http://www.asco.org. Accessed August 11, 2003.

  172. Goldwasser F, Shimuzu T, Jackman J, et al. Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon carcinoma cells. Cancer Res 1996;56(19):4430–4437.

    PubMed  CAS  Google Scholar 

  173. Shao RG, Cao CX, Shimizu T, et al. Abrogation of an S-phase checkpoint and potentiation of camptothecin cytotoxicity by 7-hydroxystaurosporine (UCN-01) in human cancer cell lines, possibly influenced by p53 function. Cancer Res 1997;57(18):4029–4035.

    PubMed  CAS  Google Scholar 

  174. Jones CB, Clements MK, Wasi S, et al. Enhancement of camptothecin-induced cytotoxicity with UCN-01 in breast cancer cells: abrogation of S/G2 arrest. Cancer Chemother Pharmacol 2000;45:252–258.

    PubMed  CAS  Google Scholar 

  175. Nieves-Neira W, Pommier Y. Apoptotic response to camptothecin and 7-hydroxystaurosporine (UCN-01) in the 8 human breast cancer cell lines of the NCI anticancer drugs screen: multifactorial relationships with topoisomerase I, protein kinase C, Bcl-2, p53, MDM-2, and caspace pathways. Int J Cancer 1999;82:396–404.

    PubMed  CAS  Google Scholar 

  176. Tse A, Schwartz GK. Abrogation of the G2/M checkpoint by 7-hydroxystaurosporine (UCN-01) on SN-38 treated cells: a strategy for targeting tumors with defective cell cycle checkpoints. Am Assoc Cancer Res 2002.

    Google Scholar 

  177. Bozko P, Larsen AK, Raymond E, et al. Influence of G2 arrest on the cytotoxicity of DNA topoisomerase inhibitors toward human carcinoma cells with different p53 status. Acta Biochimica Polonica 2002;49(1):109–119.

    PubMed  CAS  Google Scholar 

  178. Allegra CJ, Grem JL. Antimetabolites. In: (DeVita VT, Hellman S, and Rosenberg SA, eds), Cancer: Principles and Practice of Oncology. Lippincott-Raven: Philadelphia: 1997;432–452.

    Google Scholar 

  179. Santi DV, McHenry CS, Raines RT, et al. Kinetics and thermodynamics of the interaction of 5-fluoro-2′-deoxyuridylate with thymidylate synthase. Biochemistry 1987;26(26):8606–8613.

    PubMed  CAS  Google Scholar 

  180. van Triest B, Pinedo HM, van Hensbergen, et al. Thymidylate synthase level as the main predictive parameter for sensitivity to 5-fluorouracil, but not for folate-based thymidylate synthase inhibitors, in 13 nonselected colon cancer cell lines. Clin Cancer Res 1999;5(3):643–654.

    PubMed  Google Scholar 

  181. Grem JL, Nguyen D, Monahan DP, et al. Sequence-dependent antagonism between fluorouracil and paclitaxel in human breast cancer cells. Biochem Pharmacol 1999;58(3):477–486.

    PubMed  CAS  Google Scholar 

  182. Takeda H, Haisa M, Naomoto Y, et al. Effect of 5-fluorouracil on cell cycle regulatory proteins in human colon cancer cell line. Jpn J Cancer Res 1999;90(6):677–684.

    PubMed  CAS  Google Scholar 

  183. Farnham PJ, and Schimke RT. Transcriptional regulation of mouse dihydrofolate reductase in the cell cycle. J Biol Chem 1985;260(12):7675–7680.

    PubMed  CAS  Google Scholar 

  184. Ayusawa D, Shimizu K, Koyama H, et al. Cell-cycle-directed regulation of thymidylate synthase messenger RNA in human diploid fibroblasts stimulated to proliferate. J Mol Biol 1986;190(4):559–567.

    PubMed  CAS  Google Scholar 

  185. Kortmansky J, Shah MA, Kemeny N, et al. A phase I/Pharmacologic study of UCN-01 in combination with 5-fluorouracil in patients with advanced solid tumors. In NCI-EORTC Conference, 2001, Miami, FL.

    Google Scholar 

  186. Sorenson CM, Eastman A. Mechanism of cis-diamminedichloroplatinum(II)-induced cytotoxicity: role of G2 arrest and DNA double strand breaks. Cancer Res 1988;48:4484–4488.

    PubMed  CAS  Google Scholar 

  187. Schlegel R, Belinsky GS, Harris MO. Premature mitosis induced in mammalian cells by the protein kinase inhibitors 2-aminopurine and 6-dimethylaminopurine. Cell Growth Differ 1990;1(4):171–178.

    PubMed  CAS  Google Scholar 

  188. Demarcq C, Bunch RT, Creswell D, et al. The role of cell cycle progression in cisplatin-induced apoptosis in Chinese hamster ovary cells. Cell Growth Differ 1994;5(9):983–993.

    PubMed  CAS  Google Scholar 

  189. Shi Y, Frankel A, Radvanyi LG, et al. Rapamycin enhances apoptosis and increases sensitivity to cisplatin in vitro. Cancer Res 1995;55(9):1982–1988.

    PubMed  CAS  Google Scholar 

  190. O’Dwyer PJ, Johnson SW, Hamilton TC. Cisplatin and its analogues. In: (DeVita VT, Hellman S, and Rosenberg SA, eds), Cancer: Principles and Practice of Oncology, Lippincott-Raven, Philadelphia: 1997;467–483.

    Google Scholar 

  191. Barry MA, Behnke CA, Eastman A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermia. Biochem Pharmacol 1990;40(10):2353–2362.

    PubMed  CAS  Google Scholar 

  192. Judson PL, Watson JM, Gehrig PA, et al. Cisplatin inhibits paclitaxel-induced apoptosis in cisplatin-resistant ovarian cancer cell lines: possible explanation for failure of combination therapy. Cancer Res 1999;59(10):2425–2432.

    PubMed  CAS  Google Scholar 

  193. Kaufmann WK, Paules RS. DNA damage and cell cycle checkpoints. FASEB 1996;10:238–247.

    CAS  Google Scholar 

  194. Hawkins DS, Demers GW, Galloway DA. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res 1996;56:892–898.

    PubMed  CAS  Google Scholar 

  195. Brown R, Clugson C, Burns P, et al. Increased accumulation of p53 protein in cisplatin-resistant cell lines. Int J Cancer 1993;55:678–684.

    PubMed  CAS  Google Scholar 

  196. Perego P, Giarola M, Righetti SC, et al. Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer Res 1996;56:556–562.

    PubMed  CAS  Google Scholar 

  197. Zaffaroni N, Slivertrini R, Orlandi L, et al. Induction of apoptosis by taxol and cisplatin and effect on cell cycle-related proteins in cisplatin-sensitive and-resistant human ovarian cancer cells. Br J Cancer 1998;77(9):1378–1385.

    PubMed  CAS  Google Scholar 

  198. Monks A, Horris ED, Vaigro-Wolff A, et al. UCN-01 enhances the in vitro toxicity of clinical agents in human tumor cell lines. Invest New Drugs 2000;18(2):95–107.

    PubMed  CAS  Google Scholar 

  199. Bunch RT, Eastman A. 7-Hydroxystaurosporine (UCN-01) causes redistribution of proliferating cell nuclear antigen and abrogates cisplatin-induced S-phase arrest in Chinese hamster ovary cells. Cell Growth Differ 1997;8(7):779–788.

    PubMed  CAS  Google Scholar 

  200. Husain A, Yan XY, Rosales N, et al. UCN-01 enhances CDDP cytotoxicity in ovarian cancer cells independent of p53 gene status and abrogation of G2 block. Clin Cancer Res 1997;4:2089–2097.

    Google Scholar 

  201. Sugiyama K, Shimizu M, Akiyama T, et al. UCN-01 selectively enhances mitomycin C cytotoxicity in p53 defective cells which is mediated through S and/or G(2) checkpoint abrogation. Int J Cancer 2000;85(5):703–709.

    PubMed  CAS  Google Scholar 

  202. Huang P, Plunkett W. Induction of apoptosis by gemcitabine. Semin Oncol 1995;22:19–25.

    PubMed  Google Scholar 

  203. Plunkett W, et al. Gemcitabine: metabolism, mechanisms of action and self-potentiation. Semin Oncol 1995;22:3–10.

    PubMed  CAS  Google Scholar 

  204. Huang P, Chubb S, Hertel LW, et al. Action of 2′2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 1991;51:6110–6117.

    PubMed  CAS  Google Scholar 

  205. Cappella P, Tomasoni D, Faretta M, et al. Cell cycle effects of gemcitabine. Int J Cancer 2001;93:401–408.

    PubMed  CAS  Google Scholar 

  206. Huang P, Plunkett W. Fludarabine-and gemcitabine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother Pharmacol 1995;36:181–188.

    PubMed  CAS  Google Scholar 

  207. Chen M, Hough AM, Lawrence TS, et al. The role of p53 in gemcitabine-mediated cytotoxicity and radiosensitization. Cancer Chemother Pharmacol 2000;45:369–374.

    PubMed  CAS  Google Scholar 

  208. Galmarini CM, Clarke ML, Falette N, et al. Expression of non-functional p53 affects the sensitivity of cancer cells to gemcitabine. Int J Cancer 2002;97:439–445.

    PubMed  CAS  Google Scholar 

  209. Jung CP, Motwani MV, Schwartz GK. Flavopiridol increases sensitization to gemcitabine in human gastrointestinal cancer cell lines and correlates with down-regulation of ribonucleotide reductase M2 subunit. Clin Cancer Res 2001;7:2527–2536.

    PubMed  CAS  Google Scholar 

  210. Zhou BS, Tsai P, Ker R, et al. Overexpression of transfected human ribonucleotide reductase M2 subunit in human cancer cells enhances their invasive potential. Clin Exp Metastasis 1998;16:43–49.

    PubMed  CAS  Google Scholar 

  211. Goan YG, Zhou BS, Hu E, et al. Overexpression of ribonucleotide reductase as a mechanism of resistance to 2,2-difluorodeoxycytidine in human KB cancer cell line. Cancer Res 1999;59:4204–4207.

    PubMed  CAS  Google Scholar 

  212. Matranga CB, Shapiro GI. Selective sensitization of transformed cells to flavopiridol-induced apoptosis following recruitment to S-phase. Cancer Res 2002;62:1707–1717.

    PubMed  CAS  Google Scholar 

  213. Banker DE, Groudine M, Willman CL, et al. Cell cycle perturbations in acute myeloid leukemia samples following in vitro exposures to therapeutic agents. Leuk Res 1998;22:221–239.

    PubMed  CAS  Google Scholar 

  214. Shi Z, Azuma A, Sampath D, et al. S-phase arrest by nucleoside analogues and abrogation of survival without cell cycle progression by 7-hydroxystaurosporine. Cancer Res 2001;61:1065–1072.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shah, M.A., Schwartz, G.K. (2005). Cyclin-Dependent Kinase Inhibitors in Combination Chemotherapy. In: Schwartz, G.K. (eds) Combination Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-864-1:027

Download citation

  • DOI: https://doi.org/10.1385/1-59259-864-1:027

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-200-1

  • Online ISBN: 978-1-59259-864-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics