Skip to main content

Biochemical and Genetic Analyses of DNA Topoisomerase 1-Mediated DNA Damage

  • Chapter
Camptothecins in Cancer Therapy

Abstract

Eukaryotic DNA topoisomerase 1 (Top1) is a highly conserved enzyme that catalyzes changes in the linkage of DNA strands (reviewed in refs. 13). Such changes in DNA topology are important during cellular processes involving DNA, including DNA replication, recombination, transcription, and chromosome condensation (13). The monomeric Top1 enzyme, encoded by the Top1 gene, binds to duplex DNA and catalyzes the transient cleavage and relegation of a single DNA strand. This is achieved by the nucleophilic attack of the active site tyrosine on a DNA phosphodiester bond to generate a phosphotyrosyl linkage between the enzyme and the 3′-end of the nicked DNA. The formation of this enzyme-linked nick allows for the rotation of the noncovalently held DNA end around phosphodiester bonds in the nonscissile strand to effect changes in DNA linking number. In a second transesterification reaction, the 5′OH DNA end attacks the phosphotyrosyl bond to restore the phosphodiester backbone bond and liberate the enzyme. The formation of a covalent Top1p-DNA complex is the hallmark of topoisomerase-catalyzed reactions and acts to conserve the energy of the cleaved DNA bond such that the concerted nicking and relegation of DNA stands does not require an exogenous energy source, such as adenosine triphosphate (ATP). The type IB enzymes, such as eukaryotic Top1, are distinct from type IA and type II enzymes in the formation of a 3′-phosphotyrosyl bond. Recent structural insights suggest mechanistic similarities between type IB enzymes and tyrosine recombinases, such as Cre and Int, which also form a covalent linkage with a 3′-phosphoryl DNA end (4,5).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Champoux JJ. 2001 DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70: 369–413.

    Google Scholar 

  2. Keck JL, Berger JM. 1999 Enzymes that push DNA around. Nat Struct Biol 6: 900–902.

    Google Scholar 

  3. Wang JC. 2002 Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3: 430–440.

    Google Scholar 

  4. Woodfield G, Cheng C, Shuman S, Burgin AB. 2000 Vaccinia topoisomerase and Cre recombinase catalyze direct ligation of activated DNA substrates containing a 3’-para-nitrophenyl phosphate ester. Nucleic Acids Res 28:3323–3331.

    Google Scholar 

  5. Krogh BO, Shuman S. 2000 Catalytic mechanism of DNA topoisomerase IB. Mol Cell 5:1035–1041.

    Google Scholar 

  6. Li TK, Liu LF. 2001 Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41:53–77.

    Google Scholar 

  7. Kohn K, Pommier Y. 2000 Molecular and biological determinants of the cytotoxic actions of camptothecins. Perspective for the development of new topoisomerase I inhibitors. Ann NY Acad Sci 922:11–26.

    Google Scholar 

  8. Fiorani P, Bjornsti M-A. 2000 Mechanisms of DNA topoisomerase I-induced cell killing in the yeast Saccharomyces cerevisiae. Ann N Y Acad Sci 922:65–75.

    Google Scholar 

  9. Arbuck SG, Takimoto CH. 1998 An overview of topoisomerase I-targeting agents. Semin Hematol 35: 3–12.

    Google Scholar 

  10. Kaufmann SH. 1998 Cell death induced by topoisomerase-targeted drugs: more questions than answers. BBA 1400:195–212.

    Google Scholar 

  11. Rodriguez-Galindo C, Radomski K, Stewart CF, Furman W, Santana VM, Houghton PJ. 2000 Clinical use of topoisomerase I inhibitors in anticancer treatment. Med Pediatr Oncol 35:385–402.

    Google Scholar 

  12. Pizzolato JF, Saltz LB. 2003 The camptothecins. Lancet 361:2235–2242.

    Google Scholar 

  13. Bailly C. 2000 Topoisomerase I poisons and suppressors as anticancer drugs. Curr Med Chem 7: 39–58.

    Google Scholar 

  14. Ruchelman AL, Singh SK, Wu X, et al. 2002 Diaza-and triazachrysenes: potent topoisomerase-targeting agents with exceptional antitumor activity against the human tumor xenograft, MDA-MB-435. Bioorg Med Chem Lett 12: 3333–3336.

    Google Scholar 

  15. Bjornsti M-A. 2002 Cancer therapeutics in yeast. Cancer Cell 2:267–273.

    Google Scholar 

  16. Benedetti P, Benchokroun Y, Houghton PJ, Bjornsti M-A. 1998 Analysis of camptothecin resistance in yeast: relevance to cancer. Drug Res Updates 1:176–183.

    Google Scholar 

  17. Woo MH, Vance JR, Marcos AR, Bailly C, Bjornsti M-A. 2002 Active site mutations in DNA topoisomerase I distinguish the cytotoxic activities of camptothecin and the indolocarbazole, rebeccamycin. J Biol Chem 277: 3813–3822.

    Google Scholar 

  18. Urasaki Y, Laco G, Takebayashi Y, Bailly C, Kohlhagen G, Pommier Y. 2001 Use of camptothecin-resistant mammalian cell lines to evaluate the role of topoisomerase I in the antiproliferative activity of the indolocarbazole, NB-506, and its topoisomerase I binding site. Cancer Res 61:504–508.

    Google Scholar 

  19. Lee MP, Brown SD, Chen A, Hsieh T-S. 1993 DNA topoisomerase I is essential in Drosophila melanogaster. Proc Natl Acad Sci USA 90:6656–6660.

    Google Scholar 

  20. Morham SG, Kluckman KD, Voulomanos N, Smithies O. 1996 Targeted disruption of the mouse topoisomerase I gene by camptothecin selection. Mol Cell Biol 16:6804–6809.

    Google Scholar 

  21. Goto T, Wang JC. 1985 Cloning of yeast TOP1, the gene encoding DNA topoisomerase I, and construction of mutants defective in both DNA topoisomerase I and DNA topoisomerase II. Proc Natl Acad Sci USA 82:7178–7182.

    Google Scholar 

  22. Castano IB, Heathpagliuso S, Sadoff BU, Fitzhugh DJ, Christman MF. 1996 A novel family of Trf (DNA topoisomerase I-related function) genes required for proper nuclear segregation. Nucleic Acids Res 24: 2404–2410.

    Google Scholar 

  23. Eng W-K., Faucette L, Johnson RK, Sternglanz R. 1988 Evidence that DNA topoisomerase I is necessary for the cytotoxic effects of camptothecin. Mol Pharmacol 34:755–760.

    Google Scholar 

  24. Bjornsti M-A, Benedetti P, Viglianti GA, Wang JC. 1989 Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: restoration of sensitivity of the cells to the antitumor drug camptothecin. Cancer Res 49:6318–6323.

    Google Scholar 

  25. Nitiss J, Wang JC. 1988 DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci USA 85:7501–7505.

    Google Scholar 

  26. Tissenbaum HA, Guarente L. 2002 Model organisms as a guide to mammalian aging. Dev Cell 2:9–19.

    Google Scholar 

  27. Wahl GM, Carr AM. 2001 The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3:E277–E286.

    Google Scholar 

  28. Ma D. 2001 Applications of yeast in drug discovery. Prog Drug Res 57:117–162.

    Google Scholar 

  29. Cyert MS. 2001 Genetic analysis of calmodulin and its targets in Saccharomyces cerevisiae. Annu Rev Genet 35:647–672.

    Google Scholar 

  30. Shaw JD, Cummings KB, Huyer G, Michaelis S, Wendland B. 2001 Yeast as a model system for studying endocytosis. Exp Cell Res 271:1–9.

    Google Scholar 

  31. Kitagawa K, Hieter P. 2001 Evolutionary conservation between budding yeast and human kinetochores. Nat Rev Mol Cell Biol 2:678–687.

    Google Scholar 

  32. Forsburg SL. 2001 The art and design of genetic screens: yeast. Nat Rev Genet 2:659–668.

    Google Scholar 

  33. Sikorski RS, Hieter P. 1989 A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.

    Google Scholar 

  34. Schneider JC, Guarente L. 1991 Vectors for expression of cloned genes in yeast: regulation, overproduction, and underproduction. In: Methods in enzymology. Guthrie C, Fink GR, ed. Academic Press, Inc., California, 373–388.

    Google Scholar 

  35. Rothstein R. 1991 Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. In: Methods in enzymology. Abelson JN, Simon MI, ed. Academic Press, Inc., California, 281–301.

    Google Scholar 

  36. Cherry J, Adler C, Ball C, et al. 1998 SGD: Saccharomyces genome database. Nucleic Acids Res 26:73–80.

    Google Scholar 

  37. Costanzo MC, Hogan JD, Cusick ME, et al. 2000 The yeast proteome database (YPD) and caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res 28:73–76.

    Google Scholar 

  38. Rose MD, Broach JD. 1991 Cloning genes by complementation in yeast. In: Methods in enzymology. Abelson JN, Simon MI, ed. Academic Press, Inc., California, 195–230

    Google Scholar 

  39. Kauh EA, Bjornsti M-A. 1995 SCT1 mutants suppress the camptothecin sensitivity of yeast cells expressing wild-type DNA topoisomerase I. Proc Natl Acad Sci USA 92:6299–6303.

    Google Scholar 

  40. Reid RJD, Fiorani P, Sugawara M, Bjornsti M-A. 1999 CDC45 and DPB11 are required for processive DNA replication and resistance to DNA topoisomerase Imediated DNA damage. Proc Natl Acad Sci USA 96: 11440–11445.

    Google Scholar 

  41. Reid RJD, Benedetti P, Bjornsti M-A. 1998 Yeast as a model organism for studying the actions of DNA topoisomerase-targeted drugs. BBA 1400:289–300.

    Google Scholar 

  42. Knab AM, Fertala J, Bjornsti M-A. 1993 Mechanisms of camptothecin resistance in yeast DNA topoisomerase I mutants. J Biol Chem 268:22322–22330.

    Google Scholar 

  43. Bauer BE, Wolfger H, Kuchler K. 1999 Inventory and function of yeast ABC proteins: about sex, stress, pleiotropic drug and heavy metal resistance. BBA 1461:217–236.

    Google Scholar 

  44. Balzi E, Goffeau A. 1995 Yeast multidrug resistance: the PDR network. J Bioenerg Biomembr 27: 71–76.

    Google Scholar 

  45. Reid RJD, Kauh EA, Bjornsti M-A. 1997 Camptothecin sensitivity is mediated by the pleiotropic drug resistance network in yeast. J Biol Chem 272:12091–12099.

    Google Scholar 

  46. Simon JA, Szankasi P, Nguyen DK, et al. 2000 Differential toxicities of anticancer agents among DNA repair and checkpoint mutants of Saccharomyces cerevisiae. Cancer Res 60:328–333.

    Google Scholar 

  47. Knab AM, Fertala J, Bjornsti M-A. 1995 A camptothecin-resistant DNA toposiomerase I mutant exhibits altered sensitivities to other DNA topoisomerase poisons. J Biol Chem 270:6141–6148.

    Google Scholar 

  48. Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WGJ. 1998 Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279:1504–1513.

    Google Scholar 

  49. Stewart L, Redinbo MR, Qiu X, Hol WGJ, Champoux JJ. 1998 A model for the mechanism of human topoisomerase I. Science 279:1534–1541.

    Google Scholar 

  50. Redinbo MR, Stewart L, Champoux JJ, Hol WGJ. 1999 Structural flexibility in human topoisomerase I revealed in multiple non-isomorphous crystal structures. J Mol Biol 292:685–696.

    Google Scholar 

  51. Carey JF, Schultz SJ, Sisson L, Fazzio TG, Champoux JJ. 2003 NA relaxation by human topoisomerase I occurs in the closed clamp conformation of the protein.Proc Natl Acad Sci USA 100:5640–5645.

    Google Scholar 

  52. Woo MH, Lasasso C, Guo H, Pattarello L, Benedetti P, Bjornsti M-A. 2003 Locking the DNA topoisomerase I protein clamp inhibits DNA rotation and induces cell lethality. Proc Natl Acad Sci USA 100:13767–13772.

    Google Scholar 

  53. Roca J, Berger JM, Harrison SC, Wang JC. 1996 DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc Natl Acad Sci USA 93:4057–4062.

    Google Scholar 

  54. Classen S, Olland S, Berger JM. 2003 Structure of the topoisomerase II ATPase region and its mechanism of inhibition by the chemotherapeutic agent ICRF-187. Proc Natl Acad Sci USA 100:10629–10634.

    Google Scholar 

  55. Alsner J, Svestrup JQ, Kjeldsen E, Sorensen BS, Westergaard O. 1992 Identification of an N-terminal domain of eukaryotic DNA topoisomerase I dispensibel for catalytic activity but essential for in vivo function. J Biol Chem 267:12408–12411.

    Google Scholar 

  56. Bjornsti M-A, Wang JC. 1987 Expression of yeast DNA topoisomerase I can complement a conditional-lethal DNA topoisomerase I mutation in Esherichia coli. Proc Natl Acad Sci USA 84:8971–8975.

    Google Scholar 

  57. Andersen FF, Andersen KE, Kusk M, et al. 2003 Recombinogenic flap ligation mediated by human topoisomerase I. Mol Biol 330:235–246.

    Google Scholar 

  58. Lisby M, Olesen JR, Skouboe C, et al. 2001 Residues within the N-terminal domain of human topoisomerase I play a direct role in relaxation. J Biol Chem 276:20220–20227.

    Google Scholar 

  59. Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin AB Jr, Stewart L. 2002 The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci USA 99:15387–15392.

    Google Scholar 

  60. Stewart L, Ireton GC, Champoux JJ. 1999 A functional linker in human topoisomerase I is required for maximum sensitivity to camptothecin in a DNA relaxation assay. J Biol Chem 274:32950–32960.

    Google Scholar 

  61. Fiorani P, Bruselles A, Falconi M, Chillemi G, Desideri A, Benedetti P. 2003 Single mutation in the linker domain confers protein flexibility and camptothecin resistance to human topoisomerase I. J Biol Chem 278: 43268–43275.

    Google Scholar 

  62. Urasaki Y Laco GS Pourquier P et al. 2001 Characterization of a novel topoisomerase I mutation from a camptothecin-resistant human prostate cancer cell line. Cancer Res 61:1964–1969

    Google Scholar 

  63. Li XG, Haluska P, Hsiang YH, Bharti AK, Liu LF, Rubin EH. 1997 Involvement of amino acids 361 to 364 of human topoisomerase I in camptothecin resistance and enzyme catalysis. Biochem Pharm 53:1019–1027.

    Google Scholar 

  64. Jensen AD, Svestrup JQ. 1996 Purification and characterization of human topoisomerase I mutants. Eur J Biochem 236:389–394.

    Google Scholar 

  65. Rubin E, Pantazis P, Bharti A, Toppmeyer D, Giovanella B, Kufe D. 1994 Identification of a mutant human topoisomerase I with intact catalytic activity and resistance to 9-nitro-camptothecin. J Biol Chem 269: 2433–2439.

    Google Scholar 

  66. Hann CL, Carlberg AL, Bjornsti M-A. 1998 Intragenic suppressors of mutant DNA topoisomerase I-induced lethality diminish enzyme binding of DNA. J Biol Chem 273:31519–31527.

    Google Scholar 

  67. Fiorani P, Amatruda JF, Silvestri A, Butler RH, Bjornsti M-A, Benedetti P. 1999 Domain interactions affecting human DNA topoisomerase I catalysis and camptothecin sensitivity. Mol Pharmacol 56:1105–1115.

    Google Scholar 

  68. Benedetti P, Fiorani P, Capuani L, Wang JC. 1993 Camptothecin resistance from a single mutation changing glycine 363 of human DNA topoisomerase I to cysteine. Cancer Res 53:4343–4348.

    Google Scholar 

  69. Fertala J, Vance JR, Pourquier P, Pommier Y, Bjornsti M-A. 2000 Substitutions of Asn-726 in the active site of yeast DNA topoisomerase I define novel mechanisms of stabilizing the covalent-enzyme DNA intermediate. J Biol Chem 275:15246–15253.

    Google Scholar 

  70. Fujimori A, Gupta M, Hoki Y, Pommier Y. 1996 Acquired camptothecin resistance of human breast cancer MCF-7/C4 cells with normal topoisomerase I and elevated DNA repair. Mol Pharmacol 50:1472–1478.

    Google Scholar 

  71. Fujimori A, Harker WG., Kohlhagen G, Hoki Y, Pommier Y. 1995 Mutation at the catalytic site of topoisomerase I in CEM/C2, a human leukemia cell line resistant to camptothecin. Cancer Res. 55:1339–1346.

    Google Scholar 

  72. Megonigal MD, Fertala J, Bjornsti M-A. 1997 Cell cycle arrest and lethality produced by alterations in the catalytic activity of yeast DNA topoisomerase I mutants. J Biol Chem 272:12801–12808.

    Google Scholar 

  73. Lynn RM, Bjornsti M-A, Caron PR, Wang JC. 1989 Peptide sequencing and sitedirected mutagenesis identify tyrosine-727 as the active site tyrosine of Saccharomyces cerevisiae DNA topoisomerase I. Proc Natl Acad Sci USA 86:3559–3563.

    Google Scholar 

  74. Hann C, Evans DL, Fertala J, Benedetti P, Bjornsti M-A, Hall DJ.. 1998 Increased camptothecin toxicity in mammalian cells expressing Saccharomyces cerevisiae DNA topoisomerase I. J Biol Chem 273:8425–8433.

    Google Scholar 

  75. Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD. 1998 A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci USA 95:15665–15670.

    Google Scholar 

  76. Maliepaard M, van Gastelen MA, de Jong LA, et al. 1999 Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 59:4559–4563.

    Google Scholar 

  77. Bates SE, Robey R, Miyake K, Rao K, Ross DD, Litman T. 2001 The role of halftransporters in multidrug resistance. J Bioenerg Biomembr 33:503–511.

    Google Scholar 

  78. Zou L, Mitchell J, Stillman B. 1997 CDC45, a novel yeast gene that functions with the origin recognition complex and Mcm proteins in initiation of DNA replication. Mol Cell Biol 17:553–563.

    Google Scholar 

  79. Zou L, Stillman B. 2000 Assembly of a complex containing Cdc45p, replication protein A, and Mcm2p at replication origins controlled by S-phase cyclin-dependent kinases and Cdc7p-Dbf4p kinase. Mol Cell Biol 20: 3086–3096.

    Google Scholar 

  80. Masumoto H, Sugino A, Araki H. 2000 Dpb11 controls the association between DNA polymerases alpha and epsilon and the autonomously replicating sequence region of budding yeast. Mol Cell Biol 20:2809–2817.

    Google Scholar 

  81. Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. 2002 Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617–656.

    Google Scholar 

  82. Fiorani P, Reid RJD, Schepis A, Jacquiau HR, Guo H, Thimmaiah P, et al. 2004 The deubiquitinating enzyme Doa4p protects cells from DNA topoisomerase I poisons. J Biol Chem 279:21271–21281.

    Google Scholar 

  83. Swaminathan S, Amerik AY, Hochstrasser M. 1999 The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol Biol Cell 10:2583–2594.

    Google Scholar 

  84. Papa FR, Amerik AY, Hochstrasser M. 1999 Interaction of the Doa4 deubiquitinating enzyme with the yeast 26S proteasome. Mol Biol Cell 10:741–756.

    Google Scholar 

  85. Ayscough KR, Eby JJ, Lila T, Dewar H, Kozminski KG, Drubin DG. 1999 Sla1p is a functionally modular component of the yeast cortical actin cytoskeleton required for correct localization of both Rho1p-GTPase and Sla2p, a protein with talin homology. Mol Biol Cell 10:1061–1075.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

van Waardenburg, R.C.A.M., Bjornsti, MA. (2005). Biochemical and Genetic Analyses of DNA Topoisomerase 1-Mediated DNA Damage. In: Adams, V.R., Burke, T.G. (eds) Camptothecins in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1385/1-59259-866-8:109

Download citation

  • DOI: https://doi.org/10.1385/1-59259-866-8:109

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-027-4

  • Online ISBN: 978-1-59259-866-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics