Skip to main content

Part of the book series: Forensic Science and Medicine ((FSM))

Abstract

The estimation of age at death based on anatomical information from the lower extremity involves an assessment of physiological age and an attempt to correlate it with chronological age. Specific techniques employed in this process vary with the sample available for analysis as well as the general age of the individual (1,2). Some techniques are specific to particular bones or even parts of bones. Techniques that would be ideal to use to estimate age at death in fetal remains are irrelevant in adults. Some consideration also must be given to sex and population differences and their impact on age indicators. In this chapter, the relevant literature will be reviewed and recommendations for appropriate procedures will be provided. In recognition of the focus of this volume, this discussion will be limited to the lower extremity, although workers should be aware that additional and perhaps more accurate techniques may be available when other anatomical areas are present. General reviews of techniques for estimating age at death based on all parts of the body have been published by Bass (3), Krogman and Iscan (4), Scheuer and Black (5), Steele and Bramblett (6), Stewart (7), Sundick (8), Ubelaker (9), White (10), and the Workshop of European Anthropologists (11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kerley ER. Forensic anthropology and crimes involving children. J Forensic Sci 1976;21:333–339.

    PubMed  CAS  Google Scholar 

  2. Ubelaker DH. Methodological considerations in the forensic applications of human skeletal biology. In: Biological anthropology of the human skeleton. Katzenberg MA, Saunders SR, eds. New York, NY: Wiley-Liss, 2000: pp. 41–67.

    Google Scholar 

  3. Bass WM. Human osteology: a laboratory and field manual. 3rd ed. Columbia, Mo: Missouri Archaeological Society, Inc., 1987.

    Google Scholar 

  4. Krogman WM, IÅŸcan MY. The human skeleton in forensic medicine. 2nd ed. Springfield, Ill: Charles C. Thomas, 1986.

    Google Scholar 

  5. Scheuer L, Black S. Developmental Juvenile Osteology. New York, NY: Academic Press, 2000.

    Google Scholar 

  6. Steele DG, Bramblett CA. The anatomy and biology of the human skeleton. College Station, Tex: Texas A & M University Press, 1988.

    Google Scholar 

  7. Stewart TD. Essentials of forensic anthropology. Springfield, Ill: Charles C. Thomas, 1979.

    Google Scholar 

  8. Sundick RI. Age and sex determination of subadult skeletons. J Forensic Sci 1977;22:141–144.

    PubMed  CAS  Google Scholar 

  9. Ubelaker DH. Human skeletal remains: excavation, analysis, interpretation. 3rd ed. Manuals on Archeology. Washington, DC: Taraxacum, 1999.

    Google Scholar 

  10. White TD. Human osteology. New York, NY: Academic Press, Inc., 1991.

    Google Scholar 

  11. Workshop of European Anthropologists (WEA). Recommendations for age and sex diagnoses of skeletons. J Hum Evol 1980;9:517–549.

    Article  Google Scholar 

  12. Acheson RM. Maturation of the skeleton. In: Human Development. Falkner F, ed. Philadelphia: WB Saunders, 1966, pp. 465–502.

    Google Scholar 

  13. Acheson RM, Hewitt D. Oxford Child Health Survey: stature and skeletal maturation in the preschool child. Brit J Prev Soc Med 1954;8:59–65.

    CAS  Google Scholar 

  14. Pritchett JW. Longitudinal growth and growth-plate activity in the lower extremity. Clin Orthop Relat R 1992;275:274–279.

    Google Scholar 

  15. Saunders SR. Subadult skeletons and growth-related studies. In: Skeletal Biology of Past Peoples: Research Methods. Saunders SR, Katzenberg MA, eds. New York: Wiley-Liss, 1992, pp. 1–20.

    Google Scholar 

  16. Saunders SR. Subadult skeletons and growth-related studies. In: Skeletal biology of past peoples: research methods. Saunders SR, Katzenberg MA, eds. New York: Wiley-Liss, 2000, pp. 135–161.

    Google Scholar 

  17. MacLaughlin-Black S, Gunstone A. Early fetal maturity assessed from patterns of ossification in the hand and foot. Int J Osteoarchaeol 1995;5:51–59.

    Article  Google Scholar 

  18. Gill GG, Abbott LC. Practical method of predicting the growth of the femur and tibia in the child. Arch Surg 1942;45:286–315.

    Google Scholar 

  19. Scammon RE. Two simple nomographs for estimating the age and some of the major external dimensions of the human fetus. Anat Rec 1937;68:221–225.

    Article  Google Scholar 

  20. Scammon RE, Calkins LA. New empirical formulae for determining the age of human fetus. Anat Rec 1923;25:148–149.

    Google Scholar 

  21. de Vasconcellos HA, Prates JC, Belo de Moraes LG. A study of human foot length growth in the early fetal period. Ann Anat 1992;174:473–474.

    PubMed  Google Scholar 

  22. Moss ML, Noback CR, Robertson GG. Critical developmental horizons in human fetal long bones. Am J Anat 1955;97:155–175.

    Article  PubMed  CAS  Google Scholar 

  23. Beals RK, Skyhar M. Growth and development of the tibia, fibula, and ankle joint. Clin Orthop Relat R 1984;182:289–292.

    Google Scholar 

  24. Felts WJL. The prenatal development of the human femur. Am J Anat 1954;94:1–44.

    Article  PubMed  CAS  Google Scholar 

  25. Hall BK. The embryonic development of bone. Am Sci 1988;76:174–181.

    Google Scholar 

  26. Gardner E, Gray DJ. The prenatal development of the human femur. Am J Anat 1970;129:121–140.

    Article  PubMed  CAS  Google Scholar 

  27. Burkus JK, Ogden JA. Bipartite primary ossification in the developing human femur. J Pediatr Orthop 1982;2:63–65.

    PubMed  CAS  Google Scholar 

  28. de Vasconcellos HA, Ferreira E. Metatarsal growth during the second trimester: a predictor of gestational age? J Anat 1998;193:145–149.

    Article  PubMed  Google Scholar 

  29. Ubelaker DH. Estimating age at death from immature human skeletons: an overview. J Forensic Sci 1987;32:1254–1263.

    PubMed  CAS  Google Scholar 

  30. Ubelaker DH. The estimation of age at death from immature human bone. In: Age Markers in the Human Skeleton. Işcan MY, ed. Springfield: Charles C. Thomas, 1989, pp. 55–70.

    Google Scholar 

  31. Johnston FE, Zimmer LO. Assessment of growth and age in the immature skeleton. In: Reconstruction of life from the skeleton. Işcan MY, Kennedy KAR, eds. New York: Alan R. Liss, 1989, pp. 11–21.

    Google Scholar 

  32. Lampl M, Johnston FE. Problems in the aging of skeletal juveniles: perspectives from maturation assessments of living children. Am J Phys Anthropol 1996;101:345–355.

    Article  PubMed  CAS  Google Scholar 

  33. Weaver DS. Forensic aspects of fetal and neonatal skeletons. In: Forensic osteology: advances in the identification of human remains. Reichs KJ, ed. Springfield: Charles C. Thomas, 1986.

    Google Scholar 

  34. Deutsch D, Goultschin J, Anteby S. Determination of human fetal age from the length of femur, mandible, and maxillary incisor. Growth 1981;45:232–238.

    PubMed  CAS  Google Scholar 

  35. Hesdorffer MB, Scammon RE. Growth of long-bones of human fetus as illustrated by the tibia: proceedings of the Society for Experimental Biology and Medicine 1928;25:638–641.

    Google Scholar 

  36. Kelemen E, Jánossa M, Calvo W, Fliedner TM. Developmental age estimated by bone-length measurement in human fetuses. Anat Rec 1984;209:547–552.

    Article  PubMed  CAS  Google Scholar 

  37. Maresh MM. Growth of major long bones in healthy children. Am J Dis Child 1943;89:227–257.

    Google Scholar 

  38. Maresh MM. Linear growth of long bones of extremities from infancy through adolescence. Am J Dis Child 1955;89:725–742.

    CAS  Google Scholar 

  39. Maresh MM, Deming J. The growth of long bones in 80 infants. Child Dev 1939;10:91–106.

    Google Scholar 

  40. Scheuer JL, Musgrave JH, Evans SP. The estimation of late fetal and perinatal age from limb bone length by linear and logarithmic regression. Ann Hum Biol 1980;7:257–265.

    Article  PubMed  CAS  Google Scholar 

  41. Fazekas IG, Kósa F. Forensic fetal osteology. Budapest: Akadémiai Kiadó, 1978, pp. 232–256.

    Google Scholar 

  42. Kósa F. Age estimation from the fetal skeleton. In: Age markers in the human skeleton. Işcan MY, ed. Springfield: Charles C. Thomas, 1989, pp. 21–54.

    Google Scholar 

  43. Adalian P, Piercecchi-Marti MD, Bourliere-Najean B, et al. Postmortem assessment of fetal diaphyseal femoral length: validation of a radiographic methodology. J Forensic Sci 2001;46:215–219.

    PubMed  CAS  Google Scholar 

  44. Huxley AK. Analysis of shrinkage in human fetal diaphyseal lengths from fresh to dry bone using Petersohn and Köhler’s data. J Forensic Sci 1998;43:423–426.

    PubMed  CAS  Google Scholar 

  45. Huxley AK, Kósa F. Calculation of percent shrinkage in human fetal diaphyseal lengths from fresh bone to carbonized and calcined bone using Petersohn and Köhler’s data. J Forensic Sci 1999;44: 577–583.

    PubMed  CAS  Google Scholar 

  46. Sinclair D. Human growth after birth. 3rd ed. London: Oxford University Press, 1978.

    Google Scholar 

  47. Anderson M, Green WT. Lengths of the femur and tibia: norms derived from orthoentgenograms of children from five years of age until epiphyseal closure. Am J Dis Child 1948;75:279–290.

    Google Scholar 

  48. Anderson M, Green WT, Messner MB. Growth and predictions of growth in the lower extremities. J Bone Joint Surg 1963;45:1–14.

    Google Scholar 

  49. Anderson M, Messner MB, Green WT. Distribution of lengths of the normal femur and tibia in children from one to eighteen years of age. J Bone Joint Surg 1964;46:1197–1202.

    PubMed  CAS  Google Scholar 

  50. Francis CC. Growth of the human tibia. Am J Phys Anthropol 1939;25:323–331.

    Article  Google Scholar 

  51. Ghantus M. Growth of the shaft of the human radius and ulna during the first two years of life. Am J Roentgenol 1951;65:784–786.

    CAS  Google Scholar 

  52. Gindhart PS. Growth standards for the tibia and radius in children aged one month through eighteen years. Am J Phys Anthropol 1973;39:41–48.

    Article  PubMed  CAS  Google Scholar 

  53. Hoffman JM. Age estimations from diaphyseal lengths: two months to twelve years. J Forensic Sci 1979;24:461–469.

    PubMed  CAS  Google Scholar 

  54. Hoppa RD. Evaluating human skeletal growth: an Anglo-Saxon example. Int J Osteoarchaeol 1992;2: 275–288.

    Article  Google Scholar 

  55. Hoppa RD, Gruspier KL. Estimating diaphyseal length from fragmentary subadult skeletal remains: implications for paleodemographic reconstructions of a southern Ontario ossuary. Am J Phys Anthropol 1996;100:341–345.

    Article  PubMed  CAS  Google Scholar 

  56. Johnston FE. Growth of long bones of infants and young children at Indian Knoll. Am J Phys Anthropol 1962;20:249–254.

    Article  Google Scholar 

  57. Merchant VL, Ubelaker DH. Skeletal growth of the Protohistoric Arikara. Am J Phys Anthropol 1977;46:61–72.

    Article  PubMed  CAS  Google Scholar 

  58. Miles AEW, Bulman JS. Growth curves of immature bones from a Scottish island population of sixteenth to mid-nineteenth century: limb-bone diaphyses and some bones of the hand and foot. Int J Osteoarchaeol 1994;4: 121–136.

    Article  Google Scholar 

  59. Stewart TD. Identification by the skeletal structures. In: Gradwohl’s Legal Medicine. 2nd ed. Camps, FE, ed. Bristol: Wright, 1968, pp. 123–154.

    Google Scholar 

  60. Steyn M, Henneberg M. Skeletal growth of children from the Iron Age site at K2 (South Africa). Am J Phys Anthropol 1996;100:389–396.

    Article  PubMed  CAS  Google Scholar 

  61. Sundick RI. Human skeletal growth and dental development as observed in the Indian Knoll population. PhD dissertation. University of Toronto, 1972.

    Google Scholar 

  62. Sundick RI. Human skeletal growth and age determination. Homo 1979;29:228–249.

    Google Scholar 

  63. Walker PL. The linear growth of long bones in Late Woodland Indian children: proceedings of the Indiana Academy of Science 1969;78:83–87.

    Google Scholar 

  64. Hunt EE, Hatch JW. The estimation of age at death and ages of formation of transverse lines from measurements of human long bones. Am J Phys Anthropol 1981;54:461–469.

    Article  Google Scholar 

  65. Humphrey LT. Growth patterns in the modern human skeleton. Am J Phys Anthropol 1998; 105:57–72.

    Article  PubMed  CAS  Google Scholar 

  66. Anderson M, Blais M, Green WT. Growth of the normal foot during childhood and adolescence: length of the foot and interrelations of foot, stature and lower extremity as seen in serial records of children between 1–18 years of age. Am J Phys Anthropol 1956;14:287–308.

    Article  PubMed  CAS  Google Scholar 

  67. Blais MM, Green WT, Anderson M. Lengths of the growing foot. J Bone Joint Surg 1956;38: 998–1000.

    PubMed  Google Scholar 

  68. Davenport CB. The growth of the human foot. Am J Phys Anthropol 1932;17:167–211.

    Article  Google Scholar 

  69. Hill LM. Changes in the proportions of the female foot during growth. Am J Phys Anthropol 1958;16: 349–366.

    Article  PubMed  CAS  Google Scholar 

  70. Mercer BM, Sklar S, Shariatmadar A, Gillieson MS, D’Alton ME. Fetal foot length as a predictor of gestational age. Am J Obstet Gynecol 1987;156:350–355.

    PubMed  CAS  Google Scholar 

  71. Meredith HV. Human foot length from embryo to adult. Hum Biol 1944;16:207–282.

    Google Scholar 

  72. Eveleth PB, Tanner JM. Worldwide variation in human growth. 2nd ed. Cambridge: Cambridge University Press, 1990.

    Google Scholar 

  73. Blechschmidt E. The early stages of human limb development. In: Limb development and deformity: problems of evaluation and rehabilitation. Swinyard CA, ed. Springfield: Charles. C. Thomas, 1969, pp. 24–56.

    Google Scholar 

  74. Burkus JK, Ogden JA. Development of the distal femoral epiphysis: a microscopic morphological investigation of the Zone of Ranvier. J Pediatr Orthop 1984;4:661–668.

    PubMed  CAS  Google Scholar 

  75. Davies DA, Parsons FG. The age order of the appearance and union of the normal epiphyses as seen by x-rays. J Anat 1927;62:58–71.

    PubMed  Google Scholar 

  76. Flecker H. Roentgenographic observations of the times of appearance of epiphyses and their fusion with the diaphyses. J Anat 1932–1933;67:118–164.

    PubMed  Google Scholar 

  77. Menees TO, Holly LE. The ossification in the extremities of the new-born. Am J Roentgenol 1932;28: 389–390.

    Google Scholar 

  78. Roche AF, Sunderland S. Multiple ossification centres in the epiphyses of the long bones of the human hand and foot. J Bone Joint Surg 1959;41:375–383.

    Google Scholar 

  79. Siegling JA. Growth of the epiphyses. J Bone Joint Surg 1941;23:23–36.

    Google Scholar 

  80. Love SM, Ganey T, Ogden JA. Postnatal epiphyseal development: the distal tibia and fibula. J Pediatr Orthop 1990;10:298–305.

    PubMed  CAS  Google Scholar 

  81. Paterson RS. A radiological investigation of the epiphyses of the long bones. J Anat 1929;64: 28–46.

    PubMed  Google Scholar 

  82. Acheson RM. The Oxford method of assessing skeletal maturity. Clin Orthop Relat R 1957;10:19–39.

    CAS  Google Scholar 

  83. Adair FL, Scammon RE. A study of the ossification centers of the wrist, knee, and ankle at birth, with particular reference to the physical development and maturity of the newborn. Am J Obstet Gynecol 1921;2:35–60.

    Google Scholar 

  84. Bagnall KM, Harris PF, Jones PRM. A radiographic study of the longitudinal growth of primary ossification centers in limb long bones of the human fetus. Anat Rec 1982;203:293–299.

    Article  PubMed  CAS  Google Scholar 

  85. Camp JD, Cilley EIL. Diagrammatic chart showing time of appearance of the various centers of ossification and period of union. Am J Roentgenol 1931;26:905.

    Google Scholar 

  86. Christie A. Prevalence and distribution of ossification centers in the newborn infant. Am J Dis Child 1949;77:355–361.

    Google Scholar 

  87. Ellis FG, Joseph J. Time of appearance of the centres of ossification of the fibular epiphyses. J Anat 1954;88:533–536.

    PubMed  CAS  Google Scholar 

  88. Francis CC. The appearance of centers of ossification from 6 to 15 years. Am J Phys Anthropol 1940;27:127–138.

    Article  Google Scholar 

  89. Francis CC, Werle PP. The appearance of centers of ossification from birth to five years. Am J Phys Anthropol 1939;24:273–299.

    Article  Google Scholar 

  90. Gardner E, Gray DJ, O’Rahilly, R. Prenatal development of the skeleton and joints of the human foot. J Bone Joint Surg 1959;41:847–876.

    PubMed  Google Scholar 

  91. Girdany BR, Golden R. Centers of ossification of the skeleton. Am J Roentgenol 1952;68:922–924.

    CAS  Google Scholar 

  92. Hansman CF. Appearance and fusion of ossification centers in the human skeleton. Am J Roentgenol 1962;88:476–482.

    CAS  Google Scholar 

  93. Harding VSV. A method of evaluating osseous development from birth to 14 years. Child Dev 1952;23: 247–271.

    Article  PubMed  CAS  Google Scholar 

  94. Harding VV. Time schedule for the appearance and fusion of a second accessory center of ossification of the calcaneus. Child Dev 1952;23:181–184.

    Article  Google Scholar 

  95. Hill AH. Fetal age assessment by centers of ossification. Am J Phys Anthropol 1939;24:251–272.

    Article  Google Scholar 

  96. Kelly HJ, Reynolds L. Appearance and growth of ossification centers and increases in the body dimensions of White and Negro infants. Am J Roentgenol 1947;57:477–516.

    Google Scholar 

  97. Kjar I. Skeletal maturation of the human fetus assessed radiographically on the basis of ossification sequences in the hand and foot. Am J Phys Anthropol 1974;40:257–276.

    Article  PubMed  CAS  Google Scholar 

  98. Mall FP. On ossification centers in human embryos less than one hundred days old. Am J Anat 1906;5: 433–458.

    Article  Google Scholar 

  99. Meyer DB, O’Rahilly R. Multiple techniques in the study of the onset of prenatal ossification. Anat Rec 1958;132:181–193.

    Article  PubMed  CAS  Google Scholar 

  100. Meyer DB, O’Rahilly R. The onset of ossification in the human calcaneus. Anat Embryol 1976;150:19–33.

    PubMed  CAS  Google Scholar 

  101. O’Rahilly R. The human foot. Part 1: Prenatal development. In: Foot disorders: medical and surgical management, 2nd ed. Giannestras NJ, ed. Philadelphia: Lea and Febiger, 1973, pp. 16–23.

    Google Scholar 

  102. O’Rahilly R, Meyer DB. Roentgenographic investigation of the human skeleton during early fetal life. Am J Roentgenol 1956;76:455–468.

    Google Scholar 

  103. O’Rahilly R, Gardner E, Gray DJ. The skeletal development of the foot. Clin Orthop Relat R 1960;16:7–14.

    CAS  Google Scholar 

  104. Pryor JW. Roentgenographic investigation of the time element in ossification. Am J Roentgenol 1933;28:798–804.

    Google Scholar 

  105. Pyle I, Sontag LW. Variability in onset of ossification in epiphyses and short bones of the extremities. Am J Roentgenol 1943;49:795–798.

    Google Scholar 

  106. Roche AF. Epiphyseal ossification and shaft elongation in human metatarsal bones. Anat Rec 1964;149:449–451.

    Article  PubMed  CAS  Google Scholar 

  107. Sawtell RO. Ossification and growth of children from one to eight years of age. Am J Dis Child 1929;37:61–87.

    Google Scholar 

  108. Selby S. Separate centers of ossification of the tip of the internal malleolus. Am J Roentgenol 1961;86:496–501.

    CAS  Google Scholar 

  109. Sontag LW, Snell D, Anderson M. Rate of appearance of ossification centers from birth to the age of five years. Am J Dis Child 1939;58:949–956.

    Google Scholar 

  110. Walmsley R. The development of the patella. J Anat 1940;74:360–368.

    PubMed  CAS  Google Scholar 

  111. Pryor JW. Difference in the ossification of the male and female skeleton. J Anat 1927–1928;62:499–506.

    Google Scholar 

  112. Noback CR, Robertson GG. Sequences of appearance of ossification centers in the human skeleton during the first five prenatal months. Am J Anat 1951;89:1–28.

    Article  PubMed  CAS  Google Scholar 

  113. Kraus BS. Sequence of appearance of primary centers of ossification in the human foot. Am J Anat 1961;109:103–115.

    Article  Google Scholar 

  114. O’Rahilly R, Gardner E. The initial appearance of ossification in staged human embryos. Am J Anat 1972;134:291–301.

    Article  PubMed  CAS  Google Scholar 

  115. Dvonch VM, Bunch WH. Pattern of closure of the proximal femoral and tibial epiphyses in man. J Pediatr Orthop 1983;3:498–501.

    PubMed  CAS  Google Scholar 

  116. Lewis AB, Garn SM. The relationship between tooth formation and other maturational factors. Angle Orthod 1960;30:70–77.

    Google Scholar 

  117. Krogman WM. The human skeleton in forensic medicine. 2nd ed. Springfield: Charles C. Thomas, 1962.

    Google Scholar 

  118. Pyle SI, Hoerr NL. Radiographic atlas of skeletal development of the knee. Springfield: Charles C. Thomas, 1955.

    Google Scholar 

  119. Hoerr NL, Pyle SI, Francis CC. Radiographic atlas of skeletal development of the foot and ankle. Springfield: Charles C. Thomas, 1962.

    Google Scholar 

  120. McKern TW, Stewart TD. Skeletal age changes in young American males. Natick, Mass: Headquarters, Quartermaster Research, and Development Command Technical Report EP-45, 1957.

    Google Scholar 

  121. Colwell HA. Case showing abnormal epiphyses of metatarsals and first metacarpals. J Anat 1927; 62: 183.

    Google Scholar 

  122. Posener K, Walker E, Weddell G. Radiographic studies of the metacarpal and metatarsal bones in children. J Anat 1939;74:76–79.

    PubMed  CAS  Google Scholar 

  123. Cundy P, Paterson D, Morris L, Foster B. Skeletal age estimation in leg length discrepancy. J Pediatr Orthop 1988;8:513–515.

    PubMed  CAS  Google Scholar 

  124. Osborne D, Effmann E, Broda K, Harrelson J. The development of the upper end of the femur, with special reference to its internal architecture. Radiology 1980;137:71–76.

    PubMed  CAS  Google Scholar 

  125. Robling AG, Stout SD. Histomorphometry of human cortical bone: applications to age estimation. In: Biological anthropology of the human skeleton. Katzenberg MA, Saunders SR, eds. New York: Wiley-Liss, 2000, pp. 187–213.

    Google Scholar 

  126. Strandh J, Diffang CH, Saldeen T. Age determination of bone tissue by microscopical studies on microradiograms of thin saw-cut slices from femur. Swed Soc Forensic Med 1972;1:116.

    Article  Google Scholar 

  127. Ubelaker DH. Estimation of age at death from histology of human bone. In: Dating and age determination of biological materials. Zimmerman MR, Angel JL, eds. London: Croom Helm, 1986, pp. 240–247.

    Google Scholar 

  128. Ubelaker DH. The evolving role of the microscope in forensic anthropology. In: Forensic osteology: advances in the identification of human remains. 2nd ed. Reichs KJ, ed. Springfield: Charles C. Thomas, 1998, pp. 514–532.

    Google Scholar 

  129. Garn SM, Schwager PM. Age dynamics of persistent traverse lines in the tibia. Am J Phys Anthropol 1967;27:375–378.

    Article  PubMed  CAS  Google Scholar 

  130. Kerley ER. The microscopic determination of age in human bone. Am J Phys Anthrop 1965;23: 149–163.

    Article  PubMed  CAS  Google Scholar 

  131. Kerley ER. Estimation of skeletal age: after about age thirty. In: Personal identification in mass disasters. Stewart TD, ed. Washington, DC: National Museum of Natural History, Smithsonian Institution, 1970, pp. 57–70.

    Google Scholar 

  132. Kerley ER, Ubelaker DH. Revisions in the microscopic method of estimating age at death in human cortical bone. Am J Phys Anthropol 1978;49:545–546.

    Article  PubMed  CAS  Google Scholar 

  133. Saunders SR. Growth remodeling of the human femur. Can Rev Phys Anthropol 1987;:20–30.

    Google Scholar 

  134. Ahlqvist J, Damsten O. A modification of Kerley’s method for the microscopic determination of age in human bone. J Forensic Sci 1969;14:205–212.

    PubMed  CAS  Google Scholar 

  135. Bouvier M, Ubelaker DH. A comparison of two methods for the microscopic determination of age at death. Am J Phys Anthropol 1977;46:391–394.

    Article  PubMed  CAS  Google Scholar 

  136. Singh IJ, Gunberg DL. Estimation of age at death in human males from quantitative histology of bone fragments. Am J Phys Anthropol 1970;33:373–381.

    Article  PubMed  CAS  Google Scholar 

  137. Thompson DD. The core technique in the determination of age at death in skeletons. J Forensic Sci 1979;24:902–915.

    PubMed  CAS  Google Scholar 

  138. Watanabe Y, Konishi M, Shimada M, Ohara H, Iwamoto, S. Estimation of age from the femur of Japanese cadavers. Forensic Sci Int 1998;98:55–65.

    Article  PubMed  CAS  Google Scholar 

  139. Walker RA, Lovejoy CO, Meindl RS. Histomorphological and geometric proportions of human femoral cortex in individuals over 50: implications for histomorphological determination of age at death. Am J Hum Biol 1994;6: 659–667.

    Article  Google Scholar 

  140. Baccino E, Ubelaker DH, Hayek LC, Zerilli A. Evaluation of seven methods of estimating age at death from mature human skeletal remains. J Forensic Sci 1999;44:931–936.

    PubMed  CAS  Google Scholar 

  141. Hansen G. Die altersbestimmung am proximalen humerus-und femurende in rahmen der identifizierung menschlicher skelettreste. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Mathematish-Naturwissenschaftliche Reihe 1953;3:1–73.

    Google Scholar 

  142. Walker RA, Lovejoy CO. Radiographic changes in the clavicle and proximal femur and their use in the determination of skeletal age at death. Am J Phys Anthropol 1985;68:67–78.

    Article  PubMed  CAS  Google Scholar 

  143. Ruff CB, Jones HH. Bilateral asymmetry in cortical bone of the humerus and tibia—sex and age factors. Hum Biol 1981;53:69–86.

    PubMed  CAS  Google Scholar 

  144. Atkinson PJ, Weatherell JA. Variation in the density of the femoral diaphysis with age. J Bone Joint Surg 1967;49:781–788.

    CAS  Google Scholar 

  145. Ohtani S, Matsushima Y, Kobayashi Y, Kishi K. Evaluation of aspartic acid racemization ratios in the human femur for age estimation. J Forensic Sci 1998;43:949–953.

    PubMed  CAS  Google Scholar 

  146. Jackes M. Building the bases for paleodemographic analysis: adult age determination. In: Biological anthropology of the human skeleton. Katzenberg MA, Saunders SR, eds. New York: Wiley-Liss, 2000, pp. 417–466.

    Google Scholar 

  147. Saunders SR, Fitzgerald C, Rogers T, Dudar C, McKillop H. A test of several methods of skeletal age estimation using a documented archaeological sample. Can Soc Forensic Sci J 1992;25:97–118.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Ubelaker, D.H. (2005). Estimating Age at Death. In: Rich, J., Dean, D.E., Powers, R.H. (eds) Forensic Medicine of the Lower Extremity. Forensic Science and Medicine. Humana Press. https://doi.org/10.1385/1-59259-897-8:099

Download citation

  • DOI: https://doi.org/10.1385/1-59259-897-8:099

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-269-8

  • Online ISBN: 978-1-59259-897-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics