Skip to main content

Preclinical Trials for Stem Cell Therapy

  • Chapter
Stem Cells in Endocrinology

Abstract

Stem cell-based therapy holds great promise for the treatment of human diseases attributable to the loss or dysfunction of a single cell type. However, before stem cells can be used clinically, their safety and efficacy must be clearly established. This is particularly important for endocrine applications in which hormone replacement treatments are available. Indeed, new stem cell-based treatments must meet or exceed the gold standard already established for safety and efficacy (1). Traditional hormone replacement therapies are, however, frequently inadequate, either overtreating or undertreating the respective disorder. Stem cell therapies could offer the significant advantage of linking hormone release to physiologic stimuli resulting in improved hormonal control. This potential must be established and the risks assessed through rigorous preclinical testing before stem cell-based therapies are applied to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Halban P, Kahn SE, Lernmark A, Rhodes CJ. Gene and cell-replacement therapy in the treatment of type 1 diabetes: how high must the standards be set? Diabetes 2001;50:2181–2192.

    Article  PubMed  CAS  Google Scholar 

  2. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 2000;287:1442–1447.

    Article  PubMed  CAS  Google Scholar 

  3. Dawson L, Baetman-House AS, Agnew DM, et al. Safety issues in cell-based intervention trials. Fert Sterility 2003;80:1077–1085.

    Article  Google Scholar 

  4. Ginis I, Rao MS. Toward cell replacement therapy: promises and caveats. Exp Neurol 2003;184: 61–77.

    Article  PubMed  CAS  Google Scholar 

  5. Passier R. Potential of human embryonic stem cells in regenerative medicine. Hormone Res 2003;60: 11–14.

    Article  PubMed  CAS  Google Scholar 

  6. Mandel TE. Fetal Islet xenotransplantation in rodents and primates. J Mol Med 1999;77:155–160.

    Article  PubMed  CAS  Google Scholar 

  7. Many MC, Costagliola S, Detrait M, Denef F, Vassart G, Ludgate MC. Development of an animal model of autoimmune thyroid eye disease. J Immunol 1999;162:4966–4974.

    PubMed  CAS  Google Scholar 

  8. Asano T, Ageyama N, Takeuchi K, et al. Engraftment and tumor formation after allogenic in utero transplantation of primate embryonic stem cells. Transplantation 2003;76:1011–1014.

    Article  Google Scholar 

  9. Hori Y, Rulifson I, Tsal BC, Helt JJ, Cahoy JD, Kim SK. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci USA 2002;99:16105–16110.

    Article  PubMed  CAS  Google Scholar 

  10. Thomson JA, Itskovitz-Eldor J, Shapiro SS. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145–1147.

    Article  PubMed  CAS  Google Scholar 

  11. Thomson JA. Pluripotent cell lines derived from common marmoset (Cllithrix jacchus) blastocyst. Biol Reprod 1996;55:254–259.

    Article  PubMed  CAS  Google Scholar 

  12. Pesce M, Gross MK, Scholer HR. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays 1998;20:722–732.

    Article  PubMed  CAS  Google Scholar 

  13. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000;24:372–376.

    Article  PubMed  CAS  Google Scholar 

  14. Nichols J, Zevnik B, Anastassiadis K, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998;95:379–391.

    Article  PubMed  CAS  Google Scholar 

  15. DeBrujin HWA, Sleijfer DTH, Koops HS, Suurmeijer AJH, Marrink J, Ockhuizen R. Significance of human chorionic gonadotrophin, alpha-fetoprotein, and pregnancy-specific beta 1 glycoprotein in the detection of tumor relapse and partial remission in 126 patients with non-seminomatous testicular germ cell tumors. Cancer 1985;55: 829–835.

    Article  Google Scholar 

  16. Eiges R, Schuldiner M, Drukker M, Yanuka O, Itskovitz-Eldor J, Benveniste H. Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol 2001;11:514–518.

    Article  PubMed  CAS  Google Scholar 

  17. Meyer K, Irminger JC, Moss LG, et al. Sorting human beta-cells consequent to targeted expression of green fluorescent protein. Diabetes 1998;47:1974–1977.

    Article  PubMed  CAS  Google Scholar 

  18. Ma Y, Ramezani A, Lewis R, Hawley RG, Thomson JA. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells 2003;21:111–117.

    Article  PubMed  CAS  Google Scholar 

  19. Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotech 2003;21: 319–321.

    Article  CAS  Google Scholar 

  20. Coffin RS, Thomas SK, Thomas NSB, et al. Pure populations of transduced primary human cells can be produced using GFP expressing herpes virus vectors and flow cytometry. Gene Ther 1998;5:718–722.

    Article  PubMed  CAS  Google Scholar 

  21. Bulte JWM, Douglas T, Witwer B, et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotech 2001;19:1141–1145.

    Article  CAS  Google Scholar 

  22. Bulte JWM, Zhang SC, Gelderen PV, et al. Neurotransplantation of magnetically labeled oliodendrocyte progenitors: Magnetic resonance tracking of cell migration and myelination. Proc Natl Acad Sci USA 1999;96: 15256–15261.

    Article  PubMed  CAS  Google Scholar 

  23. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC Green fluorescent protein as a marker for gene expression. Science 1994;263:802–805.

    Article  PubMed  CAS  Google Scholar 

  24. Lester LB, Kuo HC, Andrews L, Nauert B, Wolf DP. Directed differentiation of rhesus monkey ES cells into pancreatic cell phenotypes. Reprod Biol Endocrinol 2004;2:42.

    Article  PubMed  CAS  Google Scholar 

  25. Kume A, Hashiyama M, Suda T, Ozawa K Green. Fluorescent protein as a selectable marker of retrovirally transduced hematopoietic progenitors. Stem Cells 1999;17:226–232.

    Article  PubMed  CAS  Google Scholar 

  26. Roccanova L, Ramphal P, Rappa R Mutation in embryonic stem cells. Science 2001;292:438–440.

    PubMed  CAS  Google Scholar 

  27. Buzzard JJ, Gough NM, Crook JM, Colman A. Karyotype of human ES cells during extended culture. Nat Biotechnol 2004;22:381–382.

    Article  PubMed  CAS  Google Scholar 

  28. Cervantes RB, Stringer JR, Shao C, Tischfield JA, Stambrook PJ. Embryonic stem cells and somatic cells differ in mutation frequency and type. Proc Natl Acad Sci USA 2002;99:3586–3590.

    Article  PubMed  CAS  Google Scholar 

  29. Ouellette MM, McDaniel LD, Wright WE, Shay JW, Schultz RA. The establishment of telomerase-immortalized cell lines representing human chromosome instability syndromes. Human Mol Genet 2000;9:403–411.

    Article  CAS  Google Scholar 

  30. Amit M, Carpenter MK, Inokuma MS, et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 2000;227:271–278.

    Article  PubMed  CAS  Google Scholar 

  31. Preti RA. Challenges associated with the development, manufacturing, and delivery of cellular medicines. Cancer J 2001;7:S62–S66.

    PubMed  Google Scholar 

  32. Patience C, Takeuchi Y, Weiss RA. Infection of human cells by an endogenous retrovirus of pigs. Nat Med 1997;3:282–286.

    Article  PubMed  CAS  Google Scholar 

  33. Wilson CA, Wong S, Muller J, Davidson GE, Rose TM, Burd P. Type C retrovirus released from porcine primary peripheral blood mononuclear cells infects human cells. J Virol 1998;72:3082–3082.

    PubMed  CAS  Google Scholar 

  34. Van der Lawn LJ, Lockey C, Griffeth BC, Frasier FS, Wilson CA, Onions DE. Infection by porcine endogenous retrovirus after islet xenotransplantation in SCID mice. Nature 2000;407:90–94.

    Article  CAS  Google Scholar 

  35. Richards M, Fong CY, Chan WK, Wong PC, Bongso A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nature Biotechnol 2002;20:933–936.

    Article  CAS  Google Scholar 

  36. Amit M, Shariki C, Margulets V, Itskovitz-Eldor J. Feeder layer-and serum-free culture of human embryonic stem cells. Biol Reprod 2004;70:837–845.

    Article  PubMed  CAS  Google Scholar 

  37. Shpall EJ, Warkentin P, Gee A, et al. ASBMT raises concerns about FDA draft rules for “good tissue practices.” Biol Blood & Marrow Transplant 2001:400–407.

    Google Scholar 

  38. Kraitchman DL, Heldman AW, Atalar E, et al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 2003;107:2290–2293.

    Article  PubMed  Google Scholar 

  39. Modo M, Cash D, Mellodew K, et al. Tracking transplanted stem cell migration using bifunctional contrast agent-enhanced, magnetic resonance imaging. NeuroImage 2002;17:803–811.

    Article  PubMed  Google Scholar 

  40. D’Amour KA, Gage FH. Genetic and functional differences between multipotent neural and pluripotent embryonic stem cells. Proc Natl Acad Sci USA 2003;100:11866–11872.

    Article  PubMed  CAS  Google Scholar 

  41. Greiner DL, Hesselton RA, Shultz LD. SCID mouse models of human stem cell engraftment. Stem Cells 1998;16:166–177.

    PubMed  CAS  Google Scholar 

  42. Min J-Y, Yang Y, Converso KL, et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 2002;92:288–296.

    Article  PubMed  CAS  Google Scholar 

  43. Watkins WM. The ABO blood group system: historical background. Transfus Med 2001;11:243–285.

    Article  PubMed  CAS  Google Scholar 

  44. Abraham RT, Wiederrecht GJ. Immunopharmacology of rapamycin. Annu Rev Immunol 1996;14:483–510.

    Article  PubMed  CAS  Google Scholar 

  45. DeFranco AL. Immunosuppressants at work. Nature 1991;352:754–755.

    Article  PubMed  CAS  Google Scholar 

  46. Drukker M, Benvenisty N. The immunogenicity of human embryonic stem-derived cells. Trends Biotechnol 2004;22:136–141.

    Article  PubMed  CAS  Google Scholar 

  47. Drukker M, Katz G, Urbach A, et al. Characterization of the expression of MHC protein in human embryonic stem cells. Proc Natl Acad Sci USA 2002;99:9864–9869.

    Article  PubMed  CAS  Google Scholar 

  48. Draper JS, Pigott C, Thomson JA, Andrews PW. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 2002;200:249–258.

    Article  PubMed  CAS  Google Scholar 

  49. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 1995;270:1158–1159.

    Article  Google Scholar 

  50. Zijlstra M, Bix M, Simister NE, Loring JM, Raulet DH, Jaenisch R. Beta 2 microglobulin deficient mice lack CD4-8+ cytolytic T cells. Nature 1990;344:742–746.

    Article  PubMed  CAS  Google Scholar 

  51. Wakayama T, Tabar V, Rodriguez I, Perry ACF, Studer L, Mombaerts P. Differentiation of embryonic stem cell lines generated from adult somatic cells by nuclear transfer. Science 2001;292:740–743.

    Article  PubMed  CAS  Google Scholar 

  52. Hwang WS, Ryu YJ, Park JH, et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst. Science 2004;303:1669–1674.

    Article  PubMed  CAS  Google Scholar 

  53. Baker JRJ. Autoimmune endocrine disease. JAMA 1997;278:1931–1937.

    Article  PubMed  Google Scholar 

  54. LaFace DW, Peck AB. Reciprocal allogeneic bone marrow transplantation between NOD mice and diabetes-nonsusceptible mice associated with transfer and prevention of autoimmune diabetes. Diabetes 1989; 38: 894–899.

    Article  PubMed  CAS  Google Scholar 

  55. Mathieu C, Casteels K, Bouilon R, Waer M. Protection against autoimmune diabetes in mixed bone marrow chimeras. Immunobiology 1997;194:1453–1457.

    Google Scholar 

  56. Nikolic B, Takeuchi Y, Leykin I, Fudaba Y, Smith RN, Sykes M. Mixed hematopoietic chimerism allows cure of autoimmune diabetes through allogeneic tolerance and reversal of autoimmunity. Diabetes 2004;53:376–383.

    Article  PubMed  CAS  Google Scholar 

  57. Ferguson TA, Griffith TS. A vision of cell death: insights into immune privilege. Immunol Rev 1997; 156:167–184.

    Article  PubMed  CAS  Google Scholar 

  58. Marmont AM, Gualandi R, Van Lint MT, Bacigalupo A. Refractory Evan’s syndrome treated with allogeneic SCT followed by DLI. Demonstration of a graft-versus-autoimmunity effect. Bone Marrow Transplant 2003; 31:399–402.

    Article  PubMed  CAS  Google Scholar 

  59. Clark SA, Quaade C, Constandy H, et al. Novel insulinoma cell lines produced by iterative engineering of Glut2, glucokinase, and human insulin expression. Diabetes 1997;46:958–967.

    Article  PubMed  CAS  Google Scholar 

  60. Kemmler W, Peterson J, Rubenstein A, Steiner D. On the biosynthesis, intracellular transport and mechanism of conversion of proinsulin to insulin and C-peptide. Diabetes 1972;21:572–581.

    PubMed  CAS  Google Scholar 

  61. Garcia-Flores M, Zueco JA, Alvarez E, Blazquez E. Expression of glucagon-like peptide-1 (GLP-1) receptor and the effect of GLP-1-(7-36) amide on insulin release by pancreatic islets during rat ontogenic development. Eur J Biochem 2001;268:514–520.

    Article  PubMed  CAS  Google Scholar 

  62. Prasadan K, Daume E, Preuett B, et al. Glucagon is required for early insulin-positive differentiation in the developing mouse pancreas. Diabetes 2002;51:3229–3236.

    Article  PubMed  CAS  Google Scholar 

  63. Tourrel C, Bailbe D, Meile M-J, Kergoat M, Portha B. Glucagon-like Peptide-1 and Exendin-4 stimulate β-cell neogenesis in streptozotocin-treated newborn rats resulting in persistently improved glucose homeostasis at adult age. Diabetes 2001;50:1562–1570.

    Article  PubMed  CAS  Google Scholar 

  64. Atkinson M, Leiter EH. The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 1999;5: 601.

    Article  PubMed  CAS  Google Scholar 

  65. Greiner DL, Rossini AA, Mordes JP. Translating data from animal models into methods for preventing human autoimmune diabetes mellitus: caveat emptor and primum non nocere. Clin Immunol 2001;100:134–143.

    Article  PubMed  CAS  Google Scholar 

  66. Lam-Tse WK, Lernmark A, Drexhage HA. Animal models of endocrine/organ-specific autoimmune diseases; do they really help us to understand human autoimmunity? Springer Semin Immunopathol 2002;24:297–321.

    Article  PubMed  CAS  Google Scholar 

  67. Polychronakos C. Animal models of spontaneous autoimmune diabetes: notes on their relevance to the human disease. Curr Diab Rep 2004;4:151–154.

    Article  PubMed  Google Scholar 

  68. Benjamin SA, Stephens LC, Hamilton BF, et al. Associations between lymphocytic thyroiditis, hypothyroidism and thyroid neoplasia in beagles. Vet Pathol 1996;33:486–494.

    Article  PubMed  CAS  Google Scholar 

  69. Wronski TJ, Schenck PA, Cintron M, Walsh CC. Effect of body weight on osteopenia in ovariectomized rats. Calcif Tissue Int 1987;40:155–159.

    Article  PubMed  CAS  Google Scholar 

  70. Turner AS. Animal models of osteoporosis-necessity and limitations. Eur Cell Materials 2001;1: 66–81.

    CAS  Google Scholar 

  71. Schuit FC. Is GLUT2 required for glucose sensing? Diabetologia 1997;40:104–111.

    Article  PubMed  CAS  Google Scholar 

  72. Ginis I, Luo Y, Miura T, et al. Differences between human and mouse embryonic stem cells. Dev Biol 2004;269:360–380.

    Article  PubMed  CAS  Google Scholar 

  73. Kenyon NS, Ranuncoli A, Masetti M, Chatzipetrou M, Ricordi C. Islet transplantation: present and future prospectives. Diabetes Metab Rev 1998;14:303–313.

    Article  PubMed  CAS  Google Scholar 

  74. Hirshberg B, Mog S, Patterson N, Leconte J, Harlan DM. Histopathological study of intrahepatic islets transplanted in the nonhuman primate model using Edmonton protocol immunosuppression. J Clin Endocrinol Metab 2002;87:5424–5429.

    Article  PubMed  CAS  Google Scholar 

  75. Hirshberg B, Montgomery S, Wysoki MG, et al. Pancreatic islet transplantation using the nonhuman primate (rhesus) model predicts that the portal vein is superior to the celiac artery as the islet infusion site. Diabetes 2002;51:2135–2140.

    Article  PubMed  CAS  Google Scholar 

  76. Sato N, Sanjuan IM, Heke M, Uchida M, Naef F, Brivanlou AH. Molecular signature of human embryonic stem cells and its comparison with the mouse. Dev Biol 2003;260:404–413.

    Article  PubMed  CAS  Google Scholar 

  77. Amado RG, Mitsuyasu RT, Zack JA. Gene therapy for the treatment of AIDS: animal model and human clinical experience. Front Biosci 1999;15:D468–D475.

    Article  Google Scholar 

  78. Carlisle KS, Montagna W. Aging model for unexposed human dermis. J Invest Dermatol 1979;73: 54–58.

    Article  PubMed  CAS  Google Scholar 

  79. Crawford DH, Janossy G, Hetherington CM, et al. Immunological characterization of hemopoietic cells in the common marmoset, rhesus monkey, and man. Transplantation 1981;31:245–250.

    Article  PubMed  CAS  Google Scholar 

  80. Jampel HD, Leong KW, Dunkelburger GR, Quigley HA. Glaucoma filtration surgery in monkeys using 5-fluorouridine in polyanhydride disks. Arch Ophthalmol 1990;108:430–435.

    PubMed  CAS  Google Scholar 

  81. Dunbar CE. The use of nonhuman primate models to improve gene transfer into haematopoietic stem cells. J Intern Med 2001;249:329–338.

    Article  PubMed  CAS  Google Scholar 

  82. Donahue RE, Dunbar CE. Update on the use of nonhuman primate models for preclinical testing of gene therapy approaches targeting hematopoietic cells. Human Gene Ther 2001;12:607–717.

    Article  CAS  Google Scholar 

  83. Farese AM, Casey DB, Smith WG, Vigneulle RM, McKearn JP, MacVittie TJ. Leridistim, a chimeric dual G-CSG and IL-3 receptor agonist, enhances multilineage hematopoietic recovery in a nonhuman primate model of radiation-induced myelosuppression: effect of schedule, dose, and route of administration. Stem Cells 2001;19:522–533.

    Article  PubMed  CAS  Google Scholar 

  84. Lindvall O, Brundin P, Widner H, et al. Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 1990;247:574–577.

    Article  PubMed  CAS  Google Scholar 

  85. Kordower JH, Freeman TB, Snow BJ, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson’s disease. N Engl J Med 1995;332:1118–1124.

    Article  PubMed  CAS  Google Scholar 

  86. Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe parkinson’s disease. N Engl J Med 2001;344:710–719.

    Article  PubMed  CAS  Google Scholar 

  87. Emerich DF, Winn SR, Hantraye PM, et al. Protective effect of encapsulated cells producing neurotrophic factor CNTF in a monkey model of Huntington’s disease. Nature 1997;386:395–399.

    Article  PubMed  CAS  Google Scholar 

  88. Skuk D, Tremblay JP. Myoblast transplantation: the current status of a potential therapeutic tool for myopathies. J Muscle Res Cell Motil 2003;24:285–300.

    Article  PubMed  CAS  Google Scholar 

  89. Pera MF, Reubinoff B, Trounson A. Human embryonic stem cells. J Cell Sci 2000;113:5–10.

    PubMed  CAS  Google Scholar 

  90. Shamblott MJ, Axelman J, Littlefield JW. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc Natl Acad Sci USA 2001;98: 113–118.

    Article  PubMed  CAS  Google Scholar 

  91. Jinag Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41–49.

    Article  CAS  Google Scholar 

  92. Thomas JM, Contreras JL, Smyth CA, et al. Successful reversal of streptozotocin-induced diabetes with stable allogeneic islet function in a preclinical model of type 1 diabetes. Diabetes 2001;50:1227–12236.

    Article  PubMed  CAS  Google Scholar 

  93. Kenyon NS, Chatzipetrou M, Masetti M, et al. Long-term survival and function of intrahepatic islet allografts in rhesus monkey treated with humanized anti-CD154. Proc Natl Acad Sci USA 1999;96:8132–8137.

    Article  PubMed  CAS  Google Scholar 

  94. Young AA, Gedulin BR, Bhavsar S, et al. Glucose-lowering and insulin-sensitizing actions of exendin-4: studies in obese diabetic (ob/ob, db/db) mice, diabetic fatty Zucker rats and diabetic rhesus monkeys (Macaca mulatta). Diabetes 1999;48:1026–1034.

    Article  PubMed  CAS  Google Scholar 

  95. Wang MY, Shimabukuro M, Lee Y, et al. Adenovirus-mediated overexpression of uncoupling protein-2 in pancreatic islets of Zucker diabetic rats increases oxidative activity and improves beta-cell function. Diabetes 1999; 48: 1020–1025.

    Article  PubMed  CAS  Google Scholar 

  96. Yoon JW, Leiter EH, Coleman DL, et al. Genetic control of organ-reactive autoantibody production in mice by obesity (ob) diabetes (db) genes. Diabetes 1988;37:1287–1293.

    Article  PubMed  CAS  Google Scholar 

  97. Hansen BC. Pathophysiology of obesity-associated type II diabetes (NIDDM): implications from longitudinal studies of non-human primates. Nutrition 1989;51:48–50.

    Google Scholar 

  98. de Koning EJ, Bodkin NL, Hansen BC, Clark A. Diabetes mellitus in Macaca mulatta monkeys is characterized by islet amyloidosis and reduction in beta-cell population. Diabetologia 1993;36:378–384.

    Article  PubMed  Google Scholar 

  99. O’Brien TD, Wagner JD, Litwak KN, et al. Islet amyloid and islet amyloid polypeptide in cynomolgus macaques (Macaca fascicularis): an animal model of human non-insulin-dependent diabetes mellitus. Vet Pathol 1996; 33:479–485.

    PubMed  CAS  Google Scholar 

  100. Hubbard GB, Steele KE, Davis KJI, Leland MM. Spontaneous pancreatic islet amyloidosis in 40 baboons. J Med Primatol 2002;31:84–90.

    Article  PubMed  CAS  Google Scholar 

  101. Costagliola S, Many MC, Stalmans-Falys M, Vassart G, Ludgate MC. Transfer of thyroiditis, with syngeneic spleen cells sensitized with the human thyrotropin receptor, to naive BALB/c and NOD mice. Endocrinology 1996; 137:4637–4643.

    Article  PubMed  CAS  Google Scholar 

  102. Miller SC, Bowman BA, Miller MA, Bagi CM. Calcium absorption and osseous organ-tissue, and envelope-specific changes following ovariectomy in rats. Bone 1991;12:439–446.

    Article  PubMed  CAS  Google Scholar 

  103. Miller SC, Bowman BM, Jee WSS. Available animal models of osteopenia—small and large. Bone 1995;17:117S–123S.

    Article  PubMed  CAS  Google Scholar 

  104. Jerome CP, Kimmel DB, McAlister JS, Weaver DS. Effects of ovariectomy on iliac trabecular bone in baboons (Papio anubis). Calc Tissue Int 1986;39:206–208.

    Article  CAS  Google Scholar 

  105. Chavassieux P, Pastoureasu P, Chapuy MC, Delmas PD, Meunier PJ. Glucocorticoid-induced inhibition of osteoblastic bone formation in ewes. a biochemical and histomorphometric study. Osteoporosis Int 1993;3: 97–102.

    Article  CAS  Google Scholar 

  106. O’Connell SL, Tresham J, Fortune CL, et al. Effects of prednisolone and deflazacort on osteocalcin metabolism in sheep. Calcif Tissue Int 1993;53:117–121.

    Article  PubMed  CAS  Google Scholar 

  107. Pope NS, Gould KS, Anderson DC, Mann DR. Effects of age and sex on bone density in rhesus monkey. Bone 1989;10:109–112.

    Article  PubMed  CAS  Google Scholar 

  108. Jayo MJ, Jerome CP, Lees CJ, Rankin SE, Weaver DS. Bone mass in female cynomolgus macaques: a cross-sectional and longitudinal study by age. Calcif Tissue Int 1994;54:231–236.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Lester, L.B., Pau, K.Y.F., Wolf, D.P. (2005). Preclinical Trials for Stem Cell Therapy. In: Lester, L.B. (eds) Stem Cells in Endocrinology. Contemporary Endocrinology. Humana Press. https://doi.org/10.1385/1-59259-900-1:243

Download citation

  • DOI: https://doi.org/10.1385/1-59259-900-1:243

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-407-4

  • Online ISBN: 978-1-59259-900-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics