Skip to main content

Multipotent Stem Cells in the Embryonic Nervous System

  • Chapter
Neural Development and Stem Cells

Part of the book series: Contemporary Neuroscience ((CNEURO))

Abstract

Neural stem cells are multipotent stem cells that have an unlimited capacity to proliferate and self-renew but whose progeny are restricted to the neural lineages. Neural stem cells can generate large numbers of mature neuronal and glial progeny, often through transient amplification of intermediate progenitor pools, similar to the pattern observed in other organ systems (1). Although self-renewal can occur through symmetric cell divisions that generate two identical daughter cells, asymmetric cell divisions that generate a renewable stem cell and a more lineage-restricted daughter cell are a hallmark of stem cells. Cells that do not self-renew indefinitely but that nevertheless proliferate and have the capacity to generate multiple phenotypes are often referred to as multipotential progenitor cells, but they will be included in a broad definition of stem cells for the purposes of this review. Other stem cell-derived precursor populations that are able to proliferate but that have more restricted lineage potential (e.g., glial restricted or neuronal restricted cells) are discussed elsewhere in this volume.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Potten, C. S. and Loeffler, M. (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020.

    PubMed  CAS  Google Scholar 

  2. Lendahl, U., Zimmerman, L. B., and McKay, R. D. (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595.

    Article  PubMed  CAS  Google Scholar 

  3. Sakakibara, S., Imai, T., Hamaguchi, K., et al. (1996) Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230–242.

    Article  PubMed  CAS  Google Scholar 

  4. Pevny, L. H., Sockanathan, S., Placzek, M., and Lovell-Badge, R. (1998) A role for SOX1 in neural determination. Development 125, 1967–1978.

    PubMed  CAS  Google Scholar 

  5. Graham, V., Khudyakov, J., Ellis, P., and Pevny, L. (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, Y., Wu, Y., Lee, J. C., et al. (2002) Oligodendrocyte and astrocyte development in rodents: an in situ and immunohistological analysis during embryonic development. Glia 40, 25–43.

    Article  PubMed  Google Scholar 

  7. Morrison, S. J., White, P. M., Zock, C., and Anderson, D. J. (1999) Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749.

    Article  PubMed  CAS  Google Scholar 

  8. Uchida, N., Buck, D. W., He, D., et al. (2000) Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14720–14725.

    Article  PubMed  CAS  Google Scholar 

  9. Rietze, R. L., Valcanis, H., Brooker, G. F., Thomas, T., Voss, A. K., and Bartlett, P. F. (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412, 736–739.

    Article  PubMed  CAS  Google Scholar 

  10. Maric, D., Maric, I., Chang, Y. H., and Barker, J. L. (2003) Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation. J. Neurosci. 23, 240–251.

    PubMed  CAS  Google Scholar 

  11. Rakic, P. (1995) Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc. Natl. Acad. Sci. USA 92, 11323–11327.

    Article  PubMed  CAS  Google Scholar 

  12. Noctor, S. C., Flint, A. C., Weissman, T. A., Wong, W. S., Clinton, B. K., and Kriegstein, A. R. (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J. Neurosci. 22, 3161–3173.

    PubMed  CAS  Google Scholar 

  13. Parnavelas, J. G. and Nadarajah, B. (2001) Radial glial cells: Are they really glia? Neuron 31, 881–884.

    Article  PubMed  CAS  Google Scholar 

  14. Rakic, P. (2003) Developmental and evolutionary adaptations of cortical radial glia. Cereb. Cortex 13, 541–549.

    Article  PubMed  Google Scholar 

  15. Morest, D. K. and Silver, J. (2003) Precursors of neurons, neuroglia, and ependymal cells in the CNS: What are they? Where are they from? How do they get where they are going? Glia 43, 6–18.

    Article  PubMed  Google Scholar 

  16. Kriegstein, A. R. and Gotz, M. (2003) Radial glia diversity: a matter of cell fate. Glia 43, 37–43.

    Article  PubMed  Google Scholar 

  17. Hartfuss, E. (2003) Characterization of Subtypes of Precursor Cells in the Developing Central Nervous System. Fakultät für Biologie, Ludwig-Maximilians Universität München. (Ph.D. thesis)

    Google Scholar 

  18. Gotz, M., Hartfuss, E., and Malatesta, P. (2002) Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice. Brain Res. Bull. 57, 777–788.

    Article  PubMed  Google Scholar 

  19. Rakic, P. (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neo-cortical expansion during evolution. Trends Neurosci. 18, 383–388.

    Article  PubMed  CAS  Google Scholar 

  20. Caviness, V. S., Jr. and Takahashi, T. (1995) Proliferative events in the cerebral ventricular zone. Brain Dev. 17, 159–163.

    Article  PubMed  Google Scholar 

  21. Chenn, A. and McConnell, S. K. (1995) Cleavage orientation and the asymmetric inheritance of Notch1 immunoreactivity in mammalian neurogenesis. Cell 82, 631–641.

    Article  PubMed  CAS  Google Scholar 

  22. Lu, B., Jan, L., and Jan, Y. N. (2000) Control of cell divisions in the nervous system: symmetry and asymmetry. Annu. Rev. Neurosci. 23, 531–556.

    Article  PubMed  CAS  Google Scholar 

  23. Temple, S. (2001) The development of neural stem cells. Nature 414, 112–117.

    Article  PubMed  CAS  Google Scholar 

  24. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L., and Kriegstein, A. R. (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144.

    Article  PubMed  CAS  Google Scholar 

  25. Kilpatrick, T. J. and Bartlett, P. F. (1995) Cloned multipotential precursors from the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated with either FGF-2 or EGF. J. Neurosci. 15, 3653–3661.

    PubMed  CAS  Google Scholar 

  26. Weiss, S., Reynolds, B. A., Vescovi, A. L., Morshead, C., Craig, C. G., and van der Kooy, D. (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci. 19, 387–393.

    Article  PubMed  CAS  Google Scholar 

  27. Johe, K. K., Hazel, T. G., Muller, T., Dugich-Djordjevic, M. M., and McKay, R. D. (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10, 3129–3140.

    Article  PubMed  CAS  Google Scholar 

  28. Qian, X., Davis, A. A., Goderie, S. K., and Temple, S. (1997) FGF2 concentration regulates the generation of neurons and glia from multipotent cortical stem cells. Neuron 18, 81–93.

    Article  PubMed  CAS  Google Scholar 

  29. Gage, F. H., Coates, P. W., Palmer, T. D., et al. (1995) Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA 92, 11879–11883.

    Article  PubMed  CAS  Google Scholar 

  30. Palmer, T. D., Ray, J., and Gage, F. H. (1995) FGF-2-responsive neuronal progenitors reside in proliferative and quiescent regions of the adult rodent brain. Mol. Cell Neurosci. 6, 474–486.

    Article  PubMed  CAS  Google Scholar 

  31. Palmer, T. D., Takahashi, J., and Gage, F. H. (1997) The adult rat hippocampus contains primordial neural stem cells. Mol. Cell Neurosci. 8, 389–404.

    Article  PubMed  CAS  Google Scholar 

  32. Reynolds, B. A. and Weiss, S. (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev. Biol. 175, 1–13.

    Article  PubMed  CAS  Google Scholar 

  33. Reynolds, B. A., Tetzlaff, W., and Weiss, S. (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574.

    PubMed  CAS  Google Scholar 

  34. Vescovi, A. L., Reynolds, B. A., Fraser, D. D., and Weiss, S. (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11, 951–966.

    Article  PubMed  CAS  Google Scholar 

  35. Temple, S. (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340, 471–473.

    Article  PubMed  CAS  Google Scholar 

  36. Mabie, P. C., Mehler, M. F., and Kessler, J. A. (1999) Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J. Neurosci. 19, 7077–7088.

    PubMed  CAS  Google Scholar 

  37. Gaiano, N., Kohtz, J. D., Turnbull, D. H., and Fishell, G. (1999) A method for rapid gain-of-function studies in the mouse embryonic nervous system. Nat. Neurosci. 2, 812–819.

    Article  PubMed  CAS  Google Scholar 

  38. Walsh, C. and Cepko, C. L. (1992) Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science 255, 434–440.

    Article  PubMed  CAS  Google Scholar 

  39. Reid, C. B., Liang, I., and Walsh, C. (1995) Systematic widespread clonal organization in cerebral cortex. Neuron 15, 299–310.

    Article  PubMed  CAS  Google Scholar 

  40. Davis, A. A. and Temple, S. (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372, 263–266.

    Article  PubMed  CAS  Google Scholar 

  41. Williams, B. P. and Price, J. (1995) Evidence for multiple precursor cell types in the embryonic rat cerebral cortex. Neuron 14, 1181–1188.

    Article  PubMed  CAS  Google Scholar 

  42. Burrows, R. C., Wancio, D., Levitt, P., and Lillien, L. (1997) Response diversity and the timing of progenitor cell maturation are regulated by developmental changes in EGFR expression in the cortex. Neuron 19, 251–267.

    Article  PubMed  CAS  Google Scholar 

  43. Viti, J., Feathers, A., Phillips, J., and Lillien, L. (2003) Epidermal growth factor receptors control competence to interpret leukemia inhibitory factor as an astrocyte inducer in developing cortex. J. Neurosci. 23, 3385–3393.

    PubMed  CAS  Google Scholar 

  44. Lillien, L. and Wancio, D. (1998) Changes in epidermal growth factor receptor expression and competence to generate glia regulate timing and choice of differentiation in the retina. Mol. Cell Neurosci. 10, 296–308.

    Article  CAS  Google Scholar 

  45. Zhu, G., Mehler, M. F., Mabie, P. C., and Kessler, J. A. (2000) Developmental changes in neural progenitor cell lineage commitment do not depend on epidermal growth factor receptor signaling. J. Neurosci. Res. 59, 312–320.

    Article  PubMed  CAS  Google Scholar 

  46. Zhu, G., Mehler, M. F., Mabie, P. C., and Kessler, J. A. (1999) Developmental changes in progenitor cell responsiveness to cytokines. J. Neurosci. Res. 56, 131–145.

    Article  PubMed  CAS  Google Scholar 

  47. Molne, M., Studer, L., Tabar, V., Ting, Y. T., Eiden, M. V., and McKay, R. D. (2000) Early cortical precursors do not undergo LIF-mediated astrocytic differentiation. J. Neurosci. Res. 59, 301–311.

    Article  PubMed  CAS  Google Scholar 

  48. Monuki, E. S. and Walsh, C. A. (2001) Mechanisms of cerebral cortical patterning in mice and humans. Nat. Neurosci. 4(Suppl), 1199–1206.

    Article  PubMed  CAS  Google Scholar 

  49. O’Leary, D. D. and Nakagawa, Y. (2002) Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex. Curr. Opin. Neurobiol. 12, 14–25.

    Article  PubMed  CAS  Google Scholar 

  50. Campbell, K. (2003) Dorsal-ventral patterning in the mammalian telencephalon. Curr. Opin. Neurobiol. 13, 50–56.

    Article  PubMed  CAS  Google Scholar 

  51. Nadarajah, B., Alifragis, P., Wong, R. O., and Parnavelas, J. G. (2003) Neuronal migration in the developing cerebral cortex: observations based on real-time imaging. Cereb. Cortex 13, 607–611.

    Article  PubMed  CAS  Google Scholar 

  52. Jessell, T. M. (2000) Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20–29.

    Article  PubMed  CAS  Google Scholar 

  53. Osterfield, M., Kirschner, M. W., and Flanagan, J. G. (2003) Graded positional information: interpretation for both fate and guidance. Cell 113, 425–428.

    Article  PubMed  CAS  Google Scholar 

  54. Parmar, M., Skogh, C., Bjorklund, A., and Campbell, K. (2002) Regional specification of neurosphere cultures derived from subregions of the embryonic telencephalon. Mol. Cell. Neurosci. 21, 645–656.

    Article  PubMed  CAS  Google Scholar 

  55. Hitoshi, S., Tropepe, V., Ekker, M., and van der Kooy, D. (2002) Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development 129, 233–244.

    PubMed  CAS  Google Scholar 

  56. Ciccolini, F. and Svendsen, C. N. (1998) Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J. Neurosci. 18, 7869–7880.

    PubMed  CAS  Google Scholar 

  57. Ortega, S., Ittmann, M., Tsang, S. H., Ehrlich, M., and Basilico, C. (1998) Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl. Acad. Sci. USA 95, 5672–5677.

    Article  PubMed  CAS  Google Scholar 

  58. Tao, Y., Black, I. B., and DiCicco-Bloom, E. (1997) In vivo neurogenesis is inhibited by neutralizing antibodies to basic fibroblast growth factor. J. Neurobiol. 33, 289–296.

    Article  PubMed  CAS  Google Scholar 

  59. Vaccarino, F. M., Schwartz, M. L., Raballo, R., et al. (1999) Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat. Neurosci. 2, 246–253.

    Article  PubMed  CAS  Google Scholar 

  60. Tao, Y., Black, I. B., and DiCicco-Bloom, E. (1996) Neurogenesis in neonatal rat brain is regulated by peripheral injection of basic fibroblast growth factor (bFGF). J. Comp Neurol. 376, 653–663.

    Article  PubMed  CAS  Google Scholar 

  61. Emoto, N., Gonzalez, A. M., Walicke, P. A., et al. (1989) Basic fibroblast growth factor (FGF) in the central nervous system: identification of specific loci of basic FGF expression in the rat brain. Growth Factors 2, 21–29.

    PubMed  CAS  Google Scholar 

  62. Goodrich, L. V. and Scott, M. P. (1998) Hedgehog and patched in neural development and disease. Neuron 21, 1243–1257.

    Article  PubMed  CAS  Google Scholar 

  63. Kornblum, H. I., Hussain, R., Wiesen, J., et al. (1998) Abnormal astrocyte development and neuronal death in mice lacking the epidermal growth factor receptor. J. Neurosci. Res. 53, 697–717.

    Article  PubMed  CAS  Google Scholar 

  64. Kornblum, H. I., Hussain, R. J., Bronstein, J. M., Gall, C. M., Lee, D. C., and Seroogy, K. B. (1997) Prenatal ontogeny of the epidermal growth factor receptor and its ligand, transforming growth factor alpha, in the rat brain. J. Comp. Neurol. 380, 243–261.

    Article  PubMed  CAS  Google Scholar 

  65. Marti, E. and Bovolenta, P. (2002) Sonic hedgehog in CNS development: one signal, multiple outputs. Trends Neurosci. 25, 89–96.

    Article  PubMed  CAS  Google Scholar 

  66. Rowitch, D. H., S-Jacques, B., Lee, S. M., Flax, J. D., Snyder, E. Y., and McMahon, A. P. (1999) Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J. Neurosci. 19, 8954–8965.

    PubMed  CAS  Google Scholar 

  67. Gabay, L., Lowell, S., Rubin, L. L., and Anderson, D. J. (2003) Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499.

    Article  PubMed  CAS  Google Scholar 

  68. Zhu, G., Mehler, M. F., Zhao, J., Yu Yung, S., and Kessler, J. A. (1999) Sonic hedgehog and BMP2 exert opposing actions on proliferation and differentiation of embryonic neural progenitor cells. Dev. Biol. 215, 118–129.

    Article  PubMed  CAS  Google Scholar 

  69. Wechsler-Reya, R. J. and Scott, M. P. (1999) Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114.

    Article  PubMed  CAS  Google Scholar 

  70. Kalyani, A. J., Piper, D., Mujtaba, T., Lucero, M. T., and Rao, M. S. (1998) Spinal cord neuronal precursors generate multiple neuronal phenotypes in culture. J. Neurosci. 18, 7856–7868.

    PubMed  CAS  Google Scholar 

  71. Lee, S. M., Tole, S., Grove, E., and McMahon, A. P. (2000) A local Wnt-3a signal is required for development of the mammalian hippocampus. Development 127, 457–467.

    PubMed  CAS  Google Scholar 

  72. Megason, S. G. and McMahon, A. P. (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129, 2087–2098.

    PubMed  CAS  Google Scholar 

  73. Viti, J., Gulacsi, A., and Lillien, L. (2003) Wnt regulation of progenitor maturation in the cortex depends on Shh or fibroblast growth factor 2. J. Neurosci. 23, 5919–5927.

    PubMed  CAS  Google Scholar 

  74. Ikeya, M., Lee, S. M., Johnson, J. E., McMahon, A. P., and Takada, S. (1997) Wnt signalling required for expansion of neural crest and CNS progenitors. Nature 389, 966–970.

    Article  PubMed  CAS  Google Scholar 

  75. Chenn, A. and Walsh, C. A. (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369.

    Article  PubMed  CAS  Google Scholar 

  76. Gressens, P., Hill, J. M., Paindaveine, B., Gozes, I., Fridkin, M., and Brenneman, D. E. (1994) Severe microcephaly induced by blockade of vasoactive intestinal peptide function in the primitive neuroepithelium of the mouse. J. Clin. Invest 94, 2020–2027.

    Article  PubMed  CAS  Google Scholar 

  77. Arsenijevic, Y., Weiss, S., Schneider, B., and Aebischer, P. (2001) Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J. Neurosci. 21, 7194–7202.

    PubMed  CAS  Google Scholar 

  78. Lin, X. and Bulleit, R. F. (1997) Insulin-like growth factor I (IGF-I) is a critical trophic factor for developing cerebellar granule cells. Brain Res. Dev. Brain Res. 99, 234–242.

    Article  PubMed  CAS  Google Scholar 

  79. Frade, J. M., Marti, E., Bovolenta, P., et al. (1996) Insulin-like growth factor-I stimulates neurogenesis in chick retina by regulating expression of the alpha 6 integrin subunit. Development 122, 2497–2506.

    PubMed  CAS  Google Scholar 

  80. Drago, J., Murphy, M., Carroll, S. M., Harvey, R. P., and Bartlett, P. F. (1991) Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I. Proc. Natl. Acad. Sci. USA 88, 2199–2203.

    Article  PubMed  CAS  Google Scholar 

  81. Raballo, R., Rhee, J., Lyn-Cook, R., Leckman, J. F., Schwartz, M. L., and Vaccarino, F. M. (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J. Neurosci. 20, 5012–5023.

    PubMed  CAS  Google Scholar 

  82. Ghosh, A. and Greenberg, M. E. (1995) Distinct roles for bFGF and NT-3 in the regulation of cortical neurogenesis. Neuron 15, 89–103.

    Article  PubMed  CAS  Google Scholar 

  83. Lukaszewicz, A., Savatier, P., Cortay, V., Kennedy, H., and Dehay, C. (2002) Contrasting effects of basic fibroblast growth factor and neurotrophin 3 on cell cycle kinetics of mouse cortical stem cells. J. Neurosci. 22, 6610–6622.

    PubMed  CAS  Google Scholar 

  84. Hajihosseini, M. K. and Dickson, C. (1999) A subset of fibroblast growth factors (Fgfs) promote survival, but Fgf-8b specifically promotes astroglial differentiation of rat cortical precursor cells. Mol. Cell. Neurosci. 14, 468–485.

    Article  PubMed  CAS  Google Scholar 

  85. Riese, D. J., Kim, E. D., Elenius, K., et al. (1996) The epidermal growth factor receptor couples transforming growth factor-alpha, heparin-binding epidermal growth factor-like factor, and amphiregulin to Neu, ErbB-3, and ErbB-4. J. Biol. Chem. 271, 20047–20052.

    Google Scholar 

  86. Dumstrei, K., Nassif, C., Abboud, G., Aryai, A., and Hartenstein, V. (1998) EGFR signaling is required for the differentiation and maintenance of neural progenitors along the dorsal midline of the Drosophila embryonic head. Development 125, 3417–3426.

    PubMed  CAS  Google Scholar 

  87. Calaora, V., Rogister, B., Bismuth, K., et al. (2001) Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro. J. Neurosci. 21, 4740–4751.

    PubMed  CAS  Google Scholar 

  88. Barnabe-Heider, F. and Miller, F. D. (2003) Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci. 23, 5149–5160.

    PubMed  CAS  Google Scholar 

  89. Yu, X., Shacka, J. J., Eells, J. B., et al. (2002) Erythropoietin receptor signalling is required for normal brain development. Development 129, 505–516.

    PubMed  CAS  Google Scholar 

  90. Sommer, L. and Rao, M. (2002) Neural stem cells and regulation of cell number. Prog. Neurobiol. 66, 1–18.

    Article  PubMed  CAS  Google Scholar 

  91. Haydar, T. F., Kuan, C. Y., Flavell, R. A., and Rakic, P. (1999) The role of cell death in regulating the size and shape of the mammalian forebrain. Cereb. Cortex 9, 621–626.

    Article  PubMed  CAS  Google Scholar 

  92. D’Sa-Eipper, C. and Roth, K. A. (2000) Caspase regulation of neuronal progenitor cell apoptosis. Dev. Neurosci. 22, 116–124.

    Article  PubMed  CAS  Google Scholar 

  93. Motoyama, N., Wang, F., Roth, K. A., et al. (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510.

    Article  PubMed  CAS  Google Scholar 

  94. Roth, K. A., Kuan, C., Haydar, T. F., et al. (2000) Epistatic and independent functions of caspase-3 and Bcl-X(L) in developmental programmed cell death. Proc. Natl. Acad. Sci. USA 97, 466–471.

    Article  PubMed  CAS  Google Scholar 

  95. Cheema, Z. F., Wade, S. B., Sata, M., Walsh, K., Sohrabji, F., and Miranda, R. C. (1999) Fas/Apo [apoptosis]-1 and associated proteins in the differentiating cerebral cortex: induction of caspase-dependent cell death and activation of NF-kappaB. J. Neurosci. 19, 1754–1770.

    PubMed  CAS  Google Scholar 

  96. Thibert, C., Teillet, M. A., Lapointe, F., Mazelin, L., Le Douarin, N. M., and Mehlen, P. (2003) Inhibition of neuroepithelial patched-induced apoptosis by sonic hedgehog. Science 301, 843–846.

    Article  PubMed  CAS  Google Scholar 

  97. Austin, C. P., Feldman, D. E., Ida, J. A., Jr., and Cepko, C. L. (1995) Vertebrate retinal ganglion cells are selected from competent progenitors by the action of Notch. Development 121, 3637–3650.

    PubMed  CAS  Google Scholar 

  98. Henrique, D., Adam, J., Myat, A., Chitnis, A., Lewis, J., and Ish-Horowicz, D. (1995) Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790.

    Article  PubMed  CAS  Google Scholar 

  99. Myat, A., Henrique, D., Ish-Horowicz, D., and Lewis, J. (1996) A chick homologue of Serrate and its relationship with Notch and Delta homologues during central neurogenesis. Dev. Biol. 174, 233–247.

    Article  PubMed  CAS  Google Scholar 

  100. Artavanis-Tsakonas, S., Rand, M. D., and Lake, R. J. (1999) Notch signaling: cell fate control and signal integration in development. Science 284, 770–776.

    Article  PubMed  CAS  Google Scholar 

  101. Wang, S., Sdrulla, A. D., diSibio, G., et al. (1998) Notch receptor activation inhibits oligodendrocyte differentiation. Neuron 21, 63–75.

    Article  PubMed  Google Scholar 

  102. Gaiano, N., Nye, J. S., and Fishell, G. (2000) Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404.

    Article  PubMed  CAS  Google Scholar 

  103. Wang, S. and Barres, B. A. (2000) Up a notch: instructing gliogenesis. Neuron 27, 197–200.

    Article  PubMed  CAS  Google Scholar 

  104. Malatesta, P., Hartfuss, E., and Gotz, M. (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127, 5253–5263.

    PubMed  CAS  Google Scholar 

  105. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., and Kriegstein, A. R. (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720.

    Article  PubMed  CAS  Google Scholar 

  106. Doetsch, F., Caille, I., Lim, D. A., Garcia-Verdugo, J. M., and Alvarez-Buylla, A. (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716.

    Article  PubMed  CAS  Google Scholar 

  107. Shimazaki, T., Shingo, T., and Weiss, S. (2001) The ciliary neurotrophic factor/leukemia inhibitory factor/gp130 receptor complex operates in the maintenance of mammalian fore-brain neural stem cells. J. Neurosci. 21, 7642–7653.

    PubMed  CAS  Google Scholar 

  108. Chojnacki, A., Shimazaki, T., Gregg, C., Weinmaster, G., and Weiss, S. (2003) Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J. Neurosci. 23, 1730–1741.

    PubMed  CAS  Google Scholar 

  109. Israsena, N., Hu, M., Fu, W., Kan, L., and Kessler, J. A. (2004) The presence of FGF2 signaling determines whether β-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev. Biol. 268, 220–231.

    Article  PubMed  CAS  Google Scholar 

  110. Zindy, F., Soares, H., Herzog, K. H., Morgan, J., Sherr, C. J., and Roussel, M. F. (1997) Expression of INK4 inhibitors of cyclin D-dependent kinases during mouse brain development. Cell Growth Differ. 8, 1139–1150.

    PubMed  CAS  Google Scholar 

  111. van Lookeren Campagne, M. and Gill, R. (1998) Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the proto-oncogene Bax. J. Comp. Neurol. 397, 181–198.

    Article  PubMed  Google Scholar 

  112. Watanabe, G., Pena, P., Shambaugh, G. E., 3rd, Haines, G. K., 3rd, and Pestell, R. G. (1998) Regulation of cyclin dependent kinase inhibitor proteins during neonatal cerebella development. Brain Res. Dev. Brain Res. 108, 77–87.

    Article  PubMed  CAS  Google Scholar 

  113. Coskun, V., Venkatraman, G., Yang, H., Rao, M. S., and Luskin, M. B. (2001) Retroviral manipulation of the expression of bone morphogenetic protein receptor Ia by SVZa progenitor cells leads to changes in their p19(INK4d) expression but not in their neuronal commitment. Int. J. Dev. Neurosci. 19, 219–227.

    Article  PubMed  CAS  Google Scholar 

  114. Gross, R. E., Mehler, M. F., Mabie, P. C., Zang, Z., Santschi, L., and Kessler, J. A. (1996) Bone morphogenetic proteins promote astroglial lineage commitment by mammalian subventricular zone progenitor cells. Neuron 17, 595–606.

    Article  PubMed  CAS  Google Scholar 

  115. Suh, J., Lu, N., Nicot, A., Tatsuno, I., and DiCicco-Bloom, E. (2001) PACAP is an anti-mitogenic signal in developing cerebral cortex. Nat. Neurosci. 4, 123–124.

    Article  PubMed  CAS  Google Scholar 

  116. Lu, N., Zhou, R., and DiCicco-Bloom, E. (1998) Opposing mitogenic regulation by PACAP in sympathetic and cerebral cortical precursors correlates with differential expression of PACAP receptor (PAC1-R) isoforms. J. Neurosci. Res. 53, 651–662.

    Article  PubMed  CAS  Google Scholar 

  117. Carey, R. G., Li, B., and DiCicco-Bloom, E. (2002) Pituitary adenylate cyclase activating polypeptide anti-mitogenic signaling in cerebral cortical progenitors is regulated by p57Kip2-dependent CDK2 activity. J. Neurosci. 22, 1583–1591.

    PubMed  CAS  Google Scholar 

  118. Lee, M., Lelievre, V., Zhao, P., et al. (2001) Pituitary adenylyl cyclase-activating polypeptide stimulates DNA synthesis but delays maturation of oligodendrocyte progenitors. J. Neurosci. 21, 3849–3859.

    PubMed  CAS  Google Scholar 

  119. Nguyen, L., Rigo, J. M., Rocher, V., et al. (2001) Neurotransmitters as early signals for central nervous system development. Cell Tissue Res. 305, 187–202.

    Article  PubMed  CAS  Google Scholar 

  120. Fiszman, M. L., Borodinsky, L. N., and Neale, J. H. (1999) GABA induces proliferation of immature cerebellar granule cells grown in vitro. Brain Res. Dev. Brain Res. 115, 1–8.

    Article  PubMed  CAS  Google Scholar 

  121. Haydar, T. F., Wang, F., Schwartz, M. L., and Rakic, P. (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J. Neurosci. 20, 5764–5774.

    PubMed  CAS  Google Scholar 

  122. LoTurco, J. J., Owens, D. F., Heath, M. J., Davis, M. B., and Kriegstein, A. R. (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15, 1287–1298.

    Article  PubMed  CAS  Google Scholar 

  123. Antonopoulos, J., Pappas, I. S., and Parnavelas, J. G. (1997) Activation of the GABAA receptor inhibits the proliferative effects of bFGF in cortical progenitor cells. Eur. J. Neurosci. 9, 291–298.

    Article  PubMed  CAS  Google Scholar 

  124. Ohtani, N., Goto, T., Waeber, C., and Bhide, P. G. (2003) Dopamine modulates cell cycle in the lateral ganglionic eminence. J. Neurosci. 23, 2840–2850.

    PubMed  CAS  Google Scholar 

  125. Luk, K. C., Kennedy, T. E., and Sadikot, A. F. (2003) Glutamate promotes proliferation of striatal neuronal progenitors by an NMDA receptor-mediated mechanism. J. Neurosci. 23, 2239–2250.

    PubMed  CAS  Google Scholar 

  126. Sadikot, A. F., Burhan, A. M., Belanger, M. C., and Sasseville, R. (1998) NMDA receptor antagonists influence early development of GABAergic interneurons in the mammalian striatum. Brain Res. Dev. Brain Res. 105, 35–42.

    Article  CAS  Google Scholar 

  127. Cameron, H. A., Hazel, T. G., and McKay, R. D. (1998) Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 36, 287–306.

    Article  PubMed  CAS  Google Scholar 

  128. Contestabile, A. (2000) Roles of NMDA receptor activity and nitric oxide production in brain development. Brain Res. Brain Res. Rev. 32, 476–509.

    Article  PubMed  CAS  Google Scholar 

  129. Ferguson, K. L. and Slack, R. S. (2003) Growth factors: Can they promote neurogenesis? Trends Neurosci. 26, 283–285.

    Article  PubMed  CAS  Google Scholar 

  130. Santa-Olalla, J. and Covarrubias, L. (1999) Basic fibroblast growth factor promotes epidermal growth factor responsiveness and survival of mesencephalic neural precursor cells. J. Neurobiol. 40, 14–27.

    Article  PubMed  CAS  Google Scholar 

  131. Daadi, M. M. and Weiss, S. (1999) Generation of tyrosine hydroxylase-producing neurons from precursors of the embryonic and adult forebrain. J. Neurosci. 19, 4484–4497.

    PubMed  CAS  Google Scholar 

  132. Bartlett, P. F., Brooker, G. J., Faux, C. H., et al. (1998) Regulation of neural stem cell differentiation in the forebrain. Immunol. Cell Biol. 76, 414–418.

    Article  PubMed  CAS  Google Scholar 

  133. Ye, W., Shimamura, K., Rubenstein, J. L., Hynes, M. A., and Rosenthal, A. (1998) FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 93, 755–766.

    Article  PubMed  CAS  Google Scholar 

  134. Hynes, M., Ye, W., Wang, K., et al. (2000) The seven-transmembrane receptor smoothened cell-autonomously induces multiple ventral cell types. Nat. Neurosci. 3, 41–46.

    Article  PubMed  CAS  Google Scholar 

  135. Ruiz, I. A. A., Palma, V., and Dahmane, N. (2002) Hedgehog-Gli signalling and the growth of the brain. Nat. Rev. Neurosci. 3, 24–33.

    Article  CAS  Google Scholar 

  136. Roelink, H. (1996) Tripartite signaling of pattern: interactions between Hedgehogs, BMPs and Wnts in the control of vertebrate development. Curr. Opin. Neurobiol. 6, 33–40.

    Article  PubMed  CAS  Google Scholar 

  137. Hirsinger, E., Duprez, D., Jouve, C., Malapert, P., Cooke, J., and Pourquie, O. (1997) Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development 124, 4605–4614.

    PubMed  CAS  Google Scholar 

  138. Lumsden, A. and Krumlauf, R. (1996) Patterning the vertebrate neuraxis. Science 274, 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  139. Toresson, H., Mata de Urquiza, A., Fagerstrom, C., Perlmann, T., and Campbell, K. (1999) Retinoids are produced by glia in the lateral ganglionic eminence and regulate striatal neuron differentiation. Development 126, 1317–1326.

    PubMed  CAS  Google Scholar 

  140. Pierani, A., Brenner-Morton, S., Chiang, C., and Jessell, T. M. (1999) A sonic hedgehog-independent, retinoid-activated pathway of neurogenesis in the ventral spinal cord. Cell 97, 903–915.

    Article  PubMed  CAS  Google Scholar 

  141. Williams, B. P., Park, J. K., Alberta, J. A., et al. (1997) A PDGF-regulated immediate early gene response initiates neuronal differentiation in ventricular zone progenitor cells. Neuron 18, 553–562.

    Article  PubMed  CAS  Google Scholar 

  142. Park, J. K., Williams, B. P., Alberta, J. A., and Stiles, C. D. (1999) Bipotent cortical progenitor cells process conflicting cues for neurons and glia in a hierarchical manner. J. Neurosci. 19, 10383–10389.

    PubMed  CAS  Google Scholar 

  143. Dihne, M., Bernreuther, C., Sibbe, M., Paulus, W., and Schachner, M. (2003) A new role for the cell adhesion molecule L1 in neural precursor cell proliferation, differentiation, and transmitter-specific subtype generation. J. Neurosci. 23, 6638–6650.

    PubMed  CAS  Google Scholar 

  144. Cheng, A., Wang, S., Cai, J., Rao, M. S., and Mattson, M. P. (2003) Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev. Biol. 258, 319–333.

    Article  PubMed  CAS  Google Scholar 

  145. Sun, Y. E., Martinowich, K., and Ge, W. (2003) Making and repairing the mammalian brain—signaling toward neurogenesis and gliogenesis. Semin. Cell Dev. Biol. 14, 161–168.

    Article  PubMed  CAS  Google Scholar 

  146. Temple, S. and Qian, X. (1996) Vertebrate neural progenitor cells: subtypes and regulation. Curr. Opin. Neurobiol. 6, 11–17.

    Article  PubMed  CAS  Google Scholar 

  147. Mabie, P. C., Mehler, M. F., Marmur, R., Papavasiliou, A., Song, Q., and Kessler, J. A. (1997) Bone morphogenetic proteins induce astroglial differentiation of oligodendroglial-astroglial progenitor cells. J. Neurosci. 17, 4112–4120.

    PubMed  CAS  Google Scholar 

  148. Gomes, W. A., Mehler, M. F., and Kessler, J. A. (2003) Transgenic overexpression of BMP4 increases astroglial and decreases oligodendroglial lineage commitment. Dev. Biol. 255, 164–177.

    Article  PubMed  CAS  Google Scholar 

  149. McKay, R. (1997) Stem cells in the central nervous system. Science 276, 66–71.

    Article  PubMed  CAS  Google Scholar 

  150. Koblar, S. A., Turnley, A. M., Classon, B. J., et al. (1998) Neural precursor differentiation into astrocytes requires signaling through the leukemia inhibitory factor receptor. Proc. Natl. Acad. Sci. USA 95, 3178–3181.

    Article  PubMed  CAS  Google Scholar 

  151. Nakashima, K., Yanagisawa, M., Arakawa, H., et al. (1999) Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 284, 479–482.

    Article  PubMed  CAS  Google Scholar 

  152. Hojo, M., Ohtsuka, T., Hashimoto, N., Gradwohl, G., Guillemot, F., and Kageyama, R. (2000) Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127, 2515–2522.

    PubMed  CAS  Google Scholar 

  153. Tanigaki, K., Nogaki, F., Takahashi, J., Tashiro, K., Kurooka, H., and Honjo, T. (2001) Notch 1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29, 45–55.

    Article  PubMed  CAS  Google Scholar 

  154. Vallejo, I. and Vallejo, M. (2002) Pituitary adenylate cyclase-activating polypeptide induces astrocyte differentiation of precursor cells from developing cerebral cortex. Mol. Cell Neurosci. 21, 671–683.

    Article  PubMed  CAS  Google Scholar 

  155. Canoll, P. D., Musacchio, J. M., Hardy, R., Reynolds, R., Marchionni, M. A., and Salzer, J. L. (1996) GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17, 229–243.

    Article  PubMed  CAS  Google Scholar 

  156. Qi, Y., Stapp, D., and Qiu, M. (2002) Origin and molecular specification of oligodendrocytes in the telencephalon. Trends Neurosci. 25, 223–225.

    Article  PubMed  CAS  Google Scholar 

  157. Rogister, B., Ben-Hur, T., and Dubois-Dalcq, M. (1999) From neural stem cells to myelinating oligodendrocytes. Mol. Cell Neurosci. 14, 287–300.

    Article  PubMed  CAS  Google Scholar 

  158. Nery, S., Wichterle, H., and Fishell, G. (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128, 527–540.

    PubMed  CAS  Google Scholar 

  159. Murray, K., Calaora, V., Rottkamp, C., Guicherit, O., and Dubois-Dalcq, M. (2002) Sonic hedgehog is a potent inducer of rat oligodendrocyte development from cortical precursors in vitro. Mol. Cell. Neurosci. 19, 320–332.

    Article  PubMed  CAS  Google Scholar 

  160. Orentas, D. M. and Miller, R. H. (1996) The origin of spinal cord oligodendrocytes is dependent on local influences from the notochord. Dev. Biol. 177, 43–53.

    Article  PubMed  CAS  Google Scholar 

  161. Pringle, N. P., Yu, W. P., Guthrie, S., et al. (1996) Determination of neuroepithelial cell fate: induction of the oligodendrocyte lineage by ventral midline cells and sonic hedgehog. Dev. Biol. 177, 30–42.

    Article  PubMed  CAS  Google Scholar 

  162. Chandran, S., Kato, H., Gerreli, D., Compston, A., Svendsen, C. N., and Allen, N. D. (2003) FGF-dependent generation of oligodendrocytes by a hedgehog-independent pathway. Development 130, 6599–6609.

    Article  PubMed  CAS  Google Scholar 

  163. Mekki-Dauriac, S., Agius, E., Kan, P., and Cochard, P. (2002) Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129, 5117–5130.

    PubMed  CAS  Google Scholar 

  164. Akazawa, C., Sasai, Y., Nakanishi, S., and Kageyama, R. (1992) Molecular characterization of a rat negative regulator with a basic helix-loop-helix structure predominantly expressed in the developing nervous system. J. Biol. Chem. 267, 21879–21885.

    PubMed  CAS  Google Scholar 

  165. Sasai, Y., Kageyama, R., Tagawa, Y., Shigemoto, R., and Nakanishi, S. (1992) Two mammalian helix-loop-helix factors structurally related to Drosophila hairy and Enhancer of split. Genes Dev. 6, 2620–2634.

    Article  PubMed  CAS  Google Scholar 

  166. Blokzijl, A., Dahlqvist, C., Reissmann, E., et al. (2003) Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell. Biol. 163, 723–728.

    Article  PubMed  CAS  Google Scholar 

  167. Ross, D. A. and Kadesch, T. (2001) The notch intracellular domain can function as a coactivator for LEF-1. Mol. Cell Biol. 21, 7537–7544.

    Article  PubMed  CAS  Google Scholar 

  168. Wu, Y., Liu, Y., Levine, E. M., and Rao, M. S. (2003) Hes1 but not Hes5 regulates an astrocyte versus oligodendrocyte fate choice in glial restricted precursors. Dev. Dyn. 226, 675–689.

    Article  PubMed  CAS  Google Scholar 

  169. Ishibashi, M., Moriyoshi, K., Sasai, Y., Shiota, K., Nakanishi, S., and Kageyama, R. (1994) Persistent expression of helix-loop-helix factor HES-1 prevents mammalian neural differentiation in the central nervous system. EMBO J. 13, 1799–1805.

    PubMed  CAS  Google Scholar 

  170. Ishibashi, M., Ang, S. L., Shiota, K., Nakanishi, S., Kageyama, R., and Guillemot, F. (1995) Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9, 3136–3148.

    Article  PubMed  CAS  Google Scholar 

  171. Ohtsuka, T., Sakamoto, M., Guillemot, F., and Kageyama, R. (2001) Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474.

    Article  PubMed  CAS  Google Scholar 

  172. Nakamura, Y., Sakakibara, S., Miyata, T., et al. (2000) The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells. J. Neurosci. 20, 283–293.

    PubMed  CAS  Google Scholar 

  173. Gratton, M. O., Torban, E., Jasmin, S. B., Theriault, F. M., German, M. S., and Stifani, S. (2003) Hes6 promotes cortical neurogenesis and inhibits Hes1 transcription repression activity by multiple mechanisms. Mol. Cell Biol. 23, 6922–6935.

    Article  PubMed  CAS  Google Scholar 

  174. Norton, J. D., Deed, R. W., Craggs, G., and Sablitzky, F. (1998) Id helix-loop-helix proteins in cell growth and differentiation. Trends Cell Biol. 8, 58–65.

    Article  PubMed  CAS  Google Scholar 

  175. Norton, J. D. (2000) ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J. Cell Sci. 113(Pt 22), 3897–3905.

    PubMed  CAS  Google Scholar 

  176. Toma, J. G., El-Bizri, H., Barnabe-Heider, F., Aloyz, R., and Miller, F. D. (2000) Evidence that helix-loop-helix proteins collaborate with retinoblastoma tumor suppressor protein to regulate cortical neurogenesis. J. Neurosci. 20, 7648–7656.

    PubMed  CAS  Google Scholar 

  177. Jen, Y., Manova, K., and Benezra, R. (1997) Each member of the Id gene family exhibits a unique expression pattern in mouse gastrulation and neurogenesis. Dev. Dyn. 208, 92–106.

    Article  PubMed  CAS  Google Scholar 

  178. Riechmann, V. and Sablitzky, F. (1995) Mutually exclusive expression of two dominant-negative helix-loop-helix (dnHLH) genes, Id4 and Id3, in the developing brain of the mouse suggests distinct regulatory roles of these dnHLH proteins during cellular proliferation and differentiation of the nervous system. Cell Growth Differ. 6, 837–843.

    PubMed  CAS  Google Scholar 

  179. Lyden, D., Young, A. Z., Zagzag, D., et al. (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401, 670–677.

    Article  PubMed  CAS  Google Scholar 

  180. Hinck, L., Nathke, I. S., Papkoff, J., and Nelson, W. J. (1994) Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J. CellBiol. 125, 1327–1340.

    Article  CAS  Google Scholar 

  181. Nathke, I. S., Hinck, L., Swedlow, J. R., Papkoff, J., and Nelson, W. J. (1994) Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. J. Cell Biol. 125, 1341–1352.

    Article  PubMed  CAS  Google Scholar 

  182. Kikuchi, A. (2000) Regulation of beta-catenin signaling in the Wnt pathway. Biochem. Biophys. Res. Commun. 268, 243–248.

    Article  PubMed  CAS  Google Scholar 

  183. Chenn, A. and Walsh, C. A. (2003) Increased neuronal production, enlarged forebrains and cytoarchitectural distortions in beta-catenin overexpressing transgenic mice. Cereb. Cortex 13, 599–606.

    Article  PubMed  Google Scholar 

  184. Sommer, L., Ma, Q., and Anderson, D. J. (1996) neurogenins, a novel family of atonal-related bHLH transcription factors, are putative mammalian neuronal determination genes that reveal progenitor cell heterogeneity in the developing CNS and PNS. Mol. Cell Neurosci. 8, 221–241.

    Article  PubMed  CAS  Google Scholar 

  185. Lo, L. C., Johnson, J. E., Wuenschell, C. W., Saito, T., and Anderson, D. J. (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially restricted subsets of early neuroepithelial and neural crest cells. Genes Dev. 5, 1524–1537.

    Article  PubMed  CAS  Google Scholar 

  186. Guillemot, F., Lo, L. C., Johnson, J. E., Auerbach, A., Anderson, D. J., and Joyner, A. L. (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476.

    Article  PubMed  CAS  Google Scholar 

  187. Nieto, M., Schuurmans, C., Britz, O., and Guillemot, F. (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413.

    Article  PubMed  CAS  Google Scholar 

  188. Ross, S. E., Greenberg, M. E., and Stiles, C. D. (2003) Basic helix-loop-helix factors in cortical development. Neuron 39, 13–25.

    Article  PubMed  CAS  Google Scholar 

  189. Lee, J. K., Cho, J. H., Hwang, W. S., Lee, Y. D., Reu, D. S., and Suh-Kim, H. (2000) Expression of neuroD/BETA2 in mitotic and postmitotic neuronal cells during the development of nervous system. Dev. Dyn. 217, 361–367.

    Article  PubMed  CAS  Google Scholar 

  190. Farah, M. H., Olson, J. M., Sucic, H. B., Hume, R. I., Tapscott, S. J., and Turner, D. L. (2000) Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693–702.

    PubMed  CAS  Google Scholar 

  191. Casarosa, S., Fode, C., and Guillemot, F. (1999) Mash1 regulates neurogenesis in the ventral telencephalon. Development 126, 525–534.

    PubMed  CAS  Google Scholar 

  192. Fode, C., Ma, Q., Casarosa, S., Ang, S. L., Anderson, D. J., and Guillemot, F. (2000) A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev. 14, 67–80.

    PubMed  CAS  Google Scholar 

  193. Chapouton, P., Schuurmans, C., Guillemot, F., and Gotz, M. (2001) The transcription factor neurogenin 2 restricts cell migration from the cortex to the striatum. Development 128, 5149–5159.

    PubMed  CAS  Google Scholar 

  194. Parras, C. M., Schuurmans, C., Scardigli, R., Kim, J., Anderson, D. J., and Guillemot, F. (2002) Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev. 16, 324–338.

    Article  PubMed  CAS  Google Scholar 

  195. Sun, Y., Nadal-Vicens, M., Misono, S., et al. (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104, 365–376.

    Article  PubMed  CAS  Google Scholar 

  196. Lu, Q. R., Yuk, D., Alberta, J. A., et al. (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25, 317–329.

    Article  PubMed  CAS  Google Scholar 

  197. Takebayashi, H., Yoshida, S., Sugimori, M., et al. (2000) Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech. Dev. 99, 143–148.

    Article  PubMed  CAS  Google Scholar 

  198. Zhou, Q., Wang, S., and Anderson, D. J. (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25, 331–343.

    Article  PubMed  CAS  Google Scholar 

  199. Zhou, Q. and Anderson, D. J. (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109, 61–73.

    Article  PubMed  CAS  Google Scholar 

  200. Mizuguchi, R., Sugimori, M., Takebayashi, H., et al. (2001) Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771.

    Article  PubMed  CAS  Google Scholar 

  201. Novitch, B. G., Chen, A. I., and Jessell, T. M. (2001) Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789.

    Article  PubMed  CAS  Google Scholar 

  202. Sakamoto, M., Hirata, H., Ohtsuka, T., Bessho, Y., and Kageyama, R. (2003) The basic helix-loop-helix genes Hesr1/Hey1 and Hesr2/Hey2 regulate maintenance of neural precursor cells in the brain. J. Biol. Chem. 278, 44808–44815.

    Article  PubMed  CAS  Google Scholar 

  203. Tomita, K., Ishibashi, M., Nakahara, K., et al. (1996) Mammalian hairy and Enhancer of split homolog 1 regulates differentiation of retinal neurons and is essential for eye morphogenesis. Neuron 16, 723–734.

    Article  PubMed  CAS  Google Scholar 

  204. Castella, P., Wagner, J. A., and Caudy, M. (1999) Regulation of hippocampal neuronal differentiation by the basic helix-loop-helix transcription factors HES-1 and MASH-1. J. Neurosci. Res. 56, 229–240.

    Article  PubMed  CAS  Google Scholar 

  205. Furukawa, T., Mukherjee, S., Bao, Z. Z., Morrow, E. M., and Cepko, C. L. (2000) rax, Hes1, and notch 1 promote the formation of Müller glia by postnatal retinal progenitor cells. Neuron 26, 383–394.

    Article  PubMed  CAS  Google Scholar 

  206. Walther, C. and Gruss, P. (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449.

    PubMed  CAS  Google Scholar 

  207. Gotz, M., Stoykova, A., and Gruss, P. (1998) Pax6 controls radial glia differentiation in the cerebral cortex. Neuron 21, 1031–1044.

    Article  PubMed  CAS  Google Scholar 

  208. Stoykova, A., Gotz, M., Gruss, P., and Price, J. (1997) Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing fore-brain. Development 124, 3765–3777.

    PubMed  CAS  Google Scholar 

  209. Heins, N., Malatesta, P., Cecconi, F., et al. (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat. Neurosci. 5, 308–315.

    Article  PubMed  CAS  Google Scholar 

  210. Scardigli, R., Schuurmans, C., Gradwohl, G., and Guillemot, F. (2001) Crossregulation between Neurogenin2 and pathways specifying neuronal identity in the spinal cord. Neuron 31, 203–217.

    Article  PubMed  CAS  Google Scholar 

  211. Anderson, S. A., Eisenstat, D. D., Shi, L., and Rubenstein, J. L. (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476.

    Article  PubMed  CAS  Google Scholar 

  212. Anderson, S. A., Qiu, M., Bulfone, A., et al. (1997) Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37.

    Article  PubMed  CAS  Google Scholar 

  213. Stuhmer, T., Anderson, S. A., Ekker, M., and Rubenstein, J. L. (2002) Ectopic expression of the Dlx genes induces glutamic acid decarboxylase and Dlx expression. Development 129, 245–252.

    PubMed  CAS  Google Scholar 

  214. Stuhmer, T., Puelles, L., Ekker, M., and Rubenstein, J. L. (2002) Expression from a Dlx gene enhancer marks adult mouse cortical GABAergic neurons. Cereb. Cortex 12, 75–85.

    Article  PubMed  Google Scholar 

  215. Panganiban, G. and Rubenstein, J. L. (2002) Developmental functions of the Distal-less/Dlx homeobox genes. Development 129, 4371–4386.

    PubMed  CAS  Google Scholar 

  216. Allan, D. W. and Thor, S. (2003) Together at last: bHLH and LIM-HD regulators cooperate to specify motor neurons. Neuron 38, 675–677.

    Article  PubMed  CAS  Google Scholar 

  217. Lee, S. K. and Pfaff, S. L. (2003) Synchronization of neurogenesis and motor neuron specification by direct coupling of bHLH and homeodomain transcription factors. Neuron 38, 731–745.

    Article  PubMed  CAS  Google Scholar 

  218. Sun, T., Dong, H., Wu, L., Kane, M., Rowitch, D. H., and Stiles, C. D. (2003) Cross-repressive interaction of the Olig2 and Nkx2.2 transcription factors in developing neural tube associated with formation of a specific physical complex. J. Neurosci. 23, 9547–9556.

    PubMed  CAS  Google Scholar 

  219. Hardcastle, Z. and Papalopulu, N. (2000) Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate. Development 127, 1303–1314.

    PubMed  CAS  Google Scholar 

  220. Dou, C. L., Li, S., and Lai, E. (1999) Dual role of brain factor-1 in regulating growth and patterning of the cerebral hemispheres. Cereb. Cortex 9, 543–550.

    Article  PubMed  CAS  Google Scholar 

  221. Heins, N., Cremisi, F., Malatesta, P., et al. (2001) Emx2 promotes symmetric cell divisions and a multipotential fate in precursors from the cerebral cortex. Mol. Cell Neurosci. 18, 485–502.

    Article  PubMed  CAS  Google Scholar 

  222. Estivill-Torrus, G., Pearson, H., van Heyningen, V., Price, D. J., and Rashbass, P. (2002) Pax6 is required to regulate the cell cycle and the rate of progression from symmetrical to asymmetrical division in mammalian cortical progenitors. Development 129, 455–466.

    PubMed  CAS  Google Scholar 

  223. Loosli, F., Winkler, S., Burgtorf, C., et al. (2001) Medaka eyeless is the key factor linking retinal determination and eye growth. Development 128, 4035–4044.

    PubMed  CAS  Google Scholar 

  224. Andreazzoli, M., Gestri, G., Angeloni, D., Menna, E., and Barsacchi, G. (1999) Role of Xrx1 in Xenopus eye and anterior brain development. Development 126, 2451–2460.

    PubMed  CAS  Google Scholar 

  225. Carl, M., Loosli, F., and Wittbrodt, J. (2002) Six3 inactivation reveals its essential role for the formation and patterning of the vertebrate eye. Development 129, 4057–4063.

    PubMed  CAS  Google Scholar 

  226. Zuber, M. E., Perron, M., Philpott, A., Bang, A., and Harris, W. A. (1999) Giant eyes in Xenopus laevis by overexpression of XOptx2. Cell 98, 341–352.

    Article  PubMed  CAS  Google Scholar 

  227. Zezula, J., Casaccia-Bonnefil, P., Ezhevsky, S. A., et al. (2001) p21cip1 is required for the differentiation of oligodendrocytes independently of cell cycle withdrawal. EMBO Rep. 2, 27–34.

    Article  PubMed  CAS  Google Scholar 

  228. Murciano, A., Zamora, J., Lopez-Sanchez, J., and Frade, J. M. (2002) Interkinetic nuclear movement may provide spatial clues to the regulation of neurogenesis. Mol. Cell Neurosci. 21, 285–300.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Jalali, A., Bonaguidi, M., Hamill, C., Kessler, J.A. (2006). Multipotent Stem Cells in the Embryonic Nervous System. In: Rao, M.S. (eds) Neural Development and Stem Cells. Contemporary Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-914-1:067

Download citation

Publish with us

Policies and ethics