Skip to main content

Orexins and the Autonomic Nervous System

  • Chapter
The Orexin/Hypocretin System

Abstract

Hyperphasia (overeating) is often associated with energy overstorage and obesity, which may lead to a myriad of serious health problems, including heart disease, hypertension, and type 2 diabetes. The hypothalamus, in which a number of neuropeptides have been demonstrated to stimulate or suppress food intake, is considered an important organ for the regulation of appetite and energy homeostasis (1). Recently, a novel hypothalamic peptide family (subsequently termed orexins) was discovered in a cytoplasmic calcium-level assay on several cells expressing individual orphan G-protein-coupled receptors (2). The mRNA for the precursor of these peptides is abundantly and specifically expressed in the lateral hypothalamus (LH) and adjacent areas, a region classically implicated in the regulation of feeding and energy homeostasis. The LH also participates in the reciprocal relation of sympathetic activity and feeding. The neuropeptides, monoamines, and many drugs involved with modulating food intake and fat stores have reciprocal effects on cardiovascular response, sympathetic nerve activity, and thermogenesis (35). Within the hypothalamus, orexin/hypocretin nerve fibers (6) and orexin/hypocretin receptors (OX1R and OX2R), especially OX2R (2,7), are found extensively in the hypothalamic paraventricular nucleus (PVN), which is thought to be involved in control of the autonomic nervous system, cardiovascular function, and neuroendocrine system (8,9). On the other hand, OX1R is most abundant in the ventromedial hypothalamic nucleus (VMH). Thus, orexins may have a functional role in regulation of the cardiovascular and autonomic nervous systems. The aim of this chapter is to summarize our recent studies, in which we used direct recording of sympathetic nerve activity in conscious rats and an in vitro whole cell patch-clamp technique to examine the direct effect of orexins on PVN neurons using a hypothalamic slice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardis, L.L. and Bellinger, L.L. (1993) The lateral hypothalamic area revisited: neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci. Biobehav. Rev. 17, 141–193.

    Article  PubMed  CAS  Google Scholar 

  2. Sakurai, T., Amemiya, A., Ishii, M., et al. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92, 573–585.

    Article  PubMed  CAS  Google Scholar 

  3. Bray, G.A. (2000) Reciprocal relation of food intake and sympathetic activity: experimental observations and clinical implications. Int. J. Obes. Relat. Metab. Disord. Suppl. 2, S8–17.

    Google Scholar 

  4. Dunbar, J.C., Hu, Y., and Lu, H. (1997) Intracerebroventriclar leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes 46, 2040–2043.

    Article  PubMed  CAS  Google Scholar 

  5. Shimizu, H., Egawa, M., Yoshimatsu, H., and Bray, G.A. (1993) Glucagon injected in the lateral hypothalamus stimulates sympathetic nerve activity and suppresses monoamine metabolism. Brain Res 630, 95–100.

    Article  PubMed  CAS  Google Scholar 

  6. Date, Y., Ueta, Y., Yamashita, H., et al. (1999) Orexins, novel orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc. Natl. Acad. Sci. U S A 96, 748–753.

    Article  PubMed  CAS  Google Scholar 

  7. Trivedi, P., Yu, H., MacNeil, D.J., Van der Ploeg, L.H.T., and Guan, X.M. (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438, 71–75.

    Article  PubMed  CAS  Google Scholar 

  8. Swanson, L.W. and Kuypers, H.G. (1980) The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 194, 555–570.

    Article  PubMed  CAS  Google Scholar 

  9. Swanson, L.W. and Sawchenko, P.E. (1983) Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6, 269–324.

    Article  PubMed  CAS  Google Scholar 

  10. Kuru, M., Ueta, Y., Serino, R., et al. (2000) Centrally administered orexin/hypocretin activates HPA axis in rats. Neuroreport 11, 1977–1980.

    Article  PubMed  CAS  Google Scholar 

  11. Shirasaka, T., Nakazato, M., Matsukura, S., Takasaki, M., and Kannan, H. (1999) Sympathetic and cardiovascular actions of orexins in conscious rats. Am. J. Physiol. 277, R1780–R1785.

    PubMed  CAS  Google Scholar 

  12. Vlahakos, D., Gavras, I., and Gavras, H. (1985) α-Adrenoreceptor agonists applied in the area of the nucleus tractus solitarii in the rat: effects of anesthesia on cardiovascular responses. Brain Res. 347, 372–375.

    Article  PubMed  CAS  Google Scholar 

  13. Kannan, H., Hayashida, Y., and Yamashita, H. (1989) Increase in sympathetic outflow by paraventricular stimulation in awake rats. Am. J. Physiol. 256, R1325–R1330.

    PubMed  CAS  Google Scholar 

  14. Samson, W.K., Gosnell, B., Chang, J.K., Resch, Z.T., and Murphy, T.C. (1999) Cardiovascular regulatory actions of the hypocretins in brain. Brain Res. 831, 248–253.

    Article  PubMed  CAS  Google Scholar 

  15. Matsumura, K., Tsuchihashi, T., and Abe, I. (2001) Central orexin-A augments sympathoadrenal outflow in conscious rabbits. Hypertension 37, 1382–1387.

    PubMed  CAS  Google Scholar 

  16. Chen, C.T., Hwang, L.L., Chang, J.K., and Dun, N.J. (2000) Pressor effects of orexins injected intracisternally and to rostral ventrolateral medulla of anesthetized rats. Am. J. Physiol. 278, R692–R697.

    CAS  Google Scholar 

  17. Hirota, K., Kushikata, T., Kudo, M., Kudo, T., Smart, D., and Matsuki, A. (2003) Effects of central hypocretin-1 administration on hemodynamic responses in young-adult and middle-aged rats. Brain Res 981, 143–150.

    Article  PubMed  CAS  Google Scholar 

  18. Gispen, W.H. and Isaacson, R.L. (1981) ACTH-induced excessive grooming in the rat. Pharmacol. Ther. 12, 209–246.

    Article  PubMed  CAS  Google Scholar 

  19. Ida, T., Nakahara, K., Katayama, T., Murakami, N., and Nakazato, M. (1999) Effect of lateral cerebroventricular injection of the appetite-stimulating neuropeptide, orexin and neuropeptide Y, on the various behavioral activities of rats. Brain Res. 821, 526–529.

    Article  PubMed  CAS  Google Scholar 

  20. Matsukawa, K., Mitchell, J.H., Wall, P.T., and Wilson, L.B. (1991) The effect of static exercise on renal sympathetic nerve activity in conscious cats. J. Physiol. (Lond.) 434, 453–467.

    CAS  Google Scholar 

  21. Walther, O.E., Iriki, M., and Simon, E. (1970) Antagonistic changes of blood flow and sympathetic activity in different vascular beds following central thermal stimulation. II. Cutaneous and visceral sympathetic activity during spinal cord heating and cooling in anesthetized rabbits and cats. Pflugers Arch. 319, 162–184.

    Article  PubMed  CAS  Google Scholar 

  22. Al-Barazanji, K.A., Wilson, S., Baker, J., Jessop, D.S., and Harbuz, M.S. (2001) Central orexi-A activates hypothalamic corticotropin releasing factor and arginine vasopressin neurons in conscious rats. J. Neuroendocrinol. 13, 421–424.

    Article  PubMed  CAS  Google Scholar 

  23. Smart, D., Sabido-David, C., Brough, S.J., et al. (2001) SB-334867-A: the first selective orexin-1 receptor antagonist. Br. J. Pharmacol. 132, 1179–1182.

    Article  PubMed  CAS  Google Scholar 

  24. Van den Pol, A.N. (1999) Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J. Neurosci. 19, 3171–3182.

    PubMed  Google Scholar 

  25. Antunes, V.R., Cristina Brailoiu, G., Kwok, E.H., Scruggs, P., and Dun, N.J. (2001) Orexin/hypocretin excite rat sympathetic preganglionic neurons in vivo and in vitro. Am. J. Physiol. 281, R1801–R1807.

    CAS  Google Scholar 

  26. Kayaba, Y., Nakamura, A., Kasuya, Y., et al. (2003) Attenuated defense response and low basal blood pressure in orexin knockout mice. Am. J. Physiol. 285, R581–R593.

    Google Scholar 

  27. Shimazu, T. (1979) Nervous control of peripheral metabolism. Acta Physiol. Pol. 30, 1–18.

    PubMed  CAS  Google Scholar 

  28. Badoer, E. (1996) Cardiovascular role of parvocellular neurons in the paraventricular nucleus of the hypothalamus. News Physiol. Sci. 11, 43–47.

    Google Scholar 

  29. Shafton, A.D., Ryan, A., and Badoer, E. (1998) Neurons in the hypothalamic paraventricular nucleus send collaterals to the spinal cord and to the rostral ventrolateral medulla in the rat. Brain Res. 801, 239–243.

    Article  PubMed  CAS  Google Scholar 

  30. Shirasaka, T., Miyahara, S., Kunitake, T., et al. (2001) Orexin depolarizes rat hypothalamic paraventricular nucleus neurons . Am. J. Physiol. 281, R1114–R1118.

    CAS  Google Scholar 

  31. Follwell, M.J., and Ferguson, A.V. (2002) Cellular mechanisms of orexin actions on paraventricular nucleus neurones in rat hypothalamus. J. Physiol. 545, 855–867.

    Article  PubMed  CAS  Google Scholar 

  32. de Lecea, L., Kilduff, T.S., Peyron, C., et al. (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. U S A 95, 322–327.

    Article  PubMed  Google Scholar 

  33. Chemelli, R.M., Willie, J.T., Sinton, C.M., et al. (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98, 437–451.

    Article  PubMed  CAS  Google Scholar 

  34. Chou, T.C., Lee, C.E., Lu, J., et al. (2001) Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 21, RC168.

    PubMed  CAS  Google Scholar 

  35. Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J.M. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432.

    Article  PubMed  CAS  Google Scholar 

  36. Shirasaka, T., Takasaki, M., and Kannan, H. (2003) Cardiovascular effects of leptin and orexins. Am. J. Physiol. 284, R639–R651.

    CAS  Google Scholar 

  37. Yamamoto, Y., Ueta, Y., Date, Y., et al. (1999) Down regulation of the prepro-orexin gene expression in genetically obese mice. Mol. Brain Res. 65, 14–22.

    Article  PubMed  CAS  Google Scholar 

  38. Wortley, K.E., Chang, G.Q., Davydova, Z., and Leibowitz, S.F. (2003) Peptides that regulate food intake: orexin gene expression is increased during states of hypertriglyceridemia. Am. J. Physiol. 284, R1454–R1465.

    CAS  Google Scholar 

  39. Kaplan, N.M. (1989) The deadly quartet: upper-body obesity, glucose intolerance, hyperglycemia, and hypertension. Arch. Intern. Med. 149, 1514–1520.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Shirasaka, T., Nakazato, M. (2006). Orexins and the Autonomic Nervous System. In: Nishino, S., Sakurai, T. (eds) The Orexin/Hypocretin System. Contemporary Clinical Neuroscience. Humana Press. https://doi.org/10.1385/1-59259-950-8:107

Download citation

Publish with us

Policies and ethics