Skip to main content

Dietary tocotrienol and UVB-induced skin damage

  • Chapter
Handbook of diet, nutrition and the skin

Part of the book series: Human Health Handbooks no. 1 ((HHH,volume 2))

  • 2661 Accesses

Abstract

Among vitamin E forms, α-tocopherol appears predominantly in humans and animals, and tocotrienols very slightly. However, tocotrienols have been shown to have higher antioxidant, anticancer, and neuroprotective properties that different from α-tocopherol. We have observed that substantial amounts of tocotrienols are present in the skin of animals fed a diet containing a tocotrienol rich fraction together with α-tocopherol extracted from palm oil (T-mix), and that the addition of sesamin to T-mix produced much higher amounts of tocotrienols in the skin. We investigated whether dietary tocotrienols could protect the skin from damage induced by ultraviolet B (UVB) irradiation in hairless mice fed four diets: vitamin E-free, α-tocopherol alone, T-mix and T-mix with sesamin. We examined the protective effects of tocotrienol on intensity of sunburn in the short term exposure and tumor incidence in long term exposure to UVB. The strongest sunburn was observed in the VE-free group, and the next strongest in the α-tocopherol group. Weak sunburn was observed in the T-mix group and the weakest sunburn in the T-mix with sesamin group. Sesamin enhanced tocotrienol concentrations in the skin and improved the sunburn scores and incidence of tumors. These results suggest that dietary tocotrienols accumulate in the skin and protect the skin more strongly than α-tocopherol against damage induced by UVB. Miyazawa’s research group also evaluated the anti-inflammatory effect of γ-tocotrienol on UVB-induced inflammatory reaction extensively using immortalized human keratinocytes and HR-1 hairless mice. They showed that orally dosed γ-tocotrienol suppressed UVB-induced changes in skin thickness, Cyclooxygenase-2 protein expression, and hyperplas in hairless mice, while α-tocopherol did not. These results suggest oral tocotrienols have potential protective power against UVB-induced skin inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

α-TTP:

α-tocopherol transfer protein

CEHC:

Carboxyethylhydroxychroman

COX-2:

Cyclooxygenase-2

DMBA:

7,12-dimethylbenz(a) anthracene

HaCaT:

Human keratinocytes

IL:

Interleukin

MCP:

Monocyte chemotactic protein

PGE2 :

Prostaglangin E2

ROS:

Reactive oxygen species

SQ-OOH:

Squalene hydroperoxide

UV:

Ultraviolet

UVB:

Ultraviolet B

References

  • Ahn, K.S., Sethi, G., Krishnan, K. and Aggarwal, B.B., 2007. Gammα-tocotrienol inhibits nuclear factor-κB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. The Journal of Biological Chemistry 282, 809–820.

    Article  PubMed  CAS  Google Scholar 

  • Handelman, G.J., Machlin, L.J., Fitch, K., Weiter, J.J. and Dratz, E.A., 1985. Oral alphα-tocopherol supplements decrease plasma gammα-tocopherol levels in humans. The Journal of Nutrition 115, 807–813.

    PubMed  CAS  Google Scholar 

  • Hayes, K.C., Pronczuk, A. and Liang, J.S., 1993. Differences in the plasma transport and tissue concentrations of tocopherols and tocotrienols: observations in humans and hamsters. Proceeding Society of Experimental Biological Medicine 202, 353–359.

    CAS  Google Scholar 

  • Hosomi, A., Arita, M., Sato, Y., Kiyose, C., Ueda, T., Igarashi, O., Arai, H. and Inoue, K., 1997. Affinity for α-tocopherol transfter protein as a determinant of the biological activities of vitamin E analogs. FEBS Letters 409, 105–108.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, S., Niwa, T. and Yamashita, K., 2000. Selective uptake of dietary tocotrienols into rat skin. Journal of Nutritional Science and Vitaminology 46, 141–143.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, S., Toyoshima, K. and Yamashita, K., 2001. Dietary sesame seeds elevate α- and γ-tocotrienol concentrations in skin and adipose tissue of rats fed the tocotrienol-rich fraction extracted from palm oil. The Journal of Nutrition 131, 2892–2897.

    PubMed  CAS  Google Scholar 

  • Ikeda, S. Tohyama T. and Yamashita, K., 2002. Dietary sesame seed and its lignans inhibit 2,7,8-trimethyl-2(2’-carboxyethyl)-6-hydroxychroman excretion into urine of rats fed -tocopherol. The Journal of Nutrition 132, 961–966.

    PubMed  CAS  Google Scholar 

  • Ikeda, S., Tohyama, T., Yoshimura, H., Hamamura, K., Abe, K. and Yamashita, K., 2003. Dietary α-tcopherol decreases α-tocotrienol but not γ-tocotrienol concentration in rats. The Journal of Nutrition 133, 428–434.

    PubMed  CAS  Google Scholar 

  • Kawakami, Y., Ysuzuki, T., Nakagawa, K. and Miyazawa, T., 2007. Distribution of Tocotienols in Rats Fed a Rice Bran Tocotrienol Concentrate. Bioscience Biotechnology and Biochemistry 71, 464–471.

    Article  CAS  Google Scholar 

  • Kayden, H.J. and Traber, M.G., 1993. Absorption, lipoprotein transport, and regulation of plasma concentrations of vitamin E in humans. The Journal of Lipid Research 34, 343–358.

    CAS  Google Scholar 

  • Khanna, S., Roy, S., Ryu, H., Bahadduri, P., Swaan, P.W., Ratan, R.R. and Sen, C.K., 2003. Molecular basis of vitamin E action. Tocotrienol modulates 12-lipoxygenase, a key mediator of glutamate-induced neurodegeneration. The Journal of Biological Chemistry 278, 43508–43515.

    Article  PubMed  CAS  Google Scholar 

  • Lodge, J.K., Ridlington, J., Leonard, S., Vaule, H. and Traber, M.G., 2001. α- and γ-tocotrienols are metabolized to carboxyethyl-hydroxychroman derivatives and excreted in human urine. Lipids 36, 43–48.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, Y. and Ananthaswarny, H.N., 2004. Toxic effects of ultraviolet radiation on the skin. Toxicology and Applied Pharmacology 195, 298–308.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, H., Shibata, A., Maruko, T., Sookwong, P., Tsuduki, T., Kawakami, K., Nishida, H. and Miyazawa, T., 2010. c-Tocotrienol Reduces Squalene Hydroperoxide-Induced Inflammatory Responses in HaCaT Keratinocytes. Lipids 45, 833–841.

    Article  PubMed  CAS  Google Scholar 

  • Patel, v., Khanna, S., Roy, S., Ezziddin, O., Sen, C.K., 2006. Natural vitamin E alphα-tocotrienol: retention in vital organs in response to lonγ-term oral supplementation and withdrawal. Free Radical Reseach 40, 763–771.

    Article  CAS  Google Scholar 

  • Podda, M., Weber, C., Traber, M.G. and Packer, L., 1996. Simultaneous determination of tissue tocopherols, tocotrienols, ubiqunols, and ubiquinones. The Journal of Lipid Research 37, 893–901.

    CAS  Google Scholar 

  • Saito, Y., Yoshida, Y., Nishio, K., Hayakawa, M. and Niki, E., 2004. Characterization of Cellular Uptake and Distribution of Vitamin E. Annals of the New York Academy of Sciences 1031, 368–375.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, M., Leist, M., Petrzika, M., Gassmann, B. and Brigelius-Flohe, R., 1995. Novel urinary metabolite of α-tocopherol, 2,5,7,8-tetramethyl-2 (2’-carboxyethyl)-6-hydroxychroman, as an indicator of an adequate vitamin E supply? The American Journal of Clinical Nutrition 62(suppl), 1527S-1534S.

    CAS  Google Scholar 

  • Sen, C.K., Savita Khanna, S., Roy, S. and Packer, L., 2000. Molecular Basis of vitamin E Action. Tocotrienol Potently Inhibits Glutamate Induced pp60c-Src kinase Activation and Death of HT4 Neuronal Cells. The Journal of biological chemistry 275, 13049–13055.

    Article  PubMed  CAS  Google Scholar 

  • Serbinova, E., Kagan, V., Han, D. and Packer, L., 1991. Free radical recycling and intramembrane mobility in the antioxidant properties of alphα-tocopherol and alphα-tocotrienol. Free Radical biology and Medicine 10, 263–275.

    Article  PubMed  CAS  Google Scholar 

  • Serbinova, E.A. and Packer, L. 1994. Antioxidant properties of tocopherol and tocotrienol. Methods Enzymology, 234, 354–367

    Article  CAS  Google Scholar 

  • Sheppard, A.J., Pennington, J.A.T. and Weihrauch, J.L., 1993. Analysis and distribution of vitamin E in vegetable oils and foods. In: Packer, L. and Fuchs, J. (eds.) Vitamin E in Health and Disease. Marcel Dekker, Inc. New York, NY, USA, pp. 9–31.

    Google Scholar 

  • Shibata, A., Nakagawa, K., Sookwong, P., Tsuduki, T., Tomita, S., Shirakawa, H., Komai, M. and Miyazawa, T., 2008. Tocotrienol inhibits secretion of angiogenic factors from human colorectal adenocarcinoma cells by suppressing hypoxia-inducible factor-1α. The Journal of Nutrition 138, 2136–2142.

    Article  PubMed  CAS  Google Scholar 

  • Shibata, A., Nakagawa, K., Kawakami, Y., Tsuzuki, T. and Miyazawa, T., 2010. Suppression of γ-tocotrienol on UVB Induced Inflammation in HaCaT Keratinocytes and HR-1 Hairless Mice via Inflammatory Mediators Multiple Signaling. Journal of Agricultural and Food Chemistry 58, 2013–2020.

    Article  Google Scholar 

  • Tomeo, A.C., Geller, M., Watkins, T.R., Gapor, A. and Bierenbaum, M.L., 1995. Antioxidant effects of tocotrienols in patients with hyperlipidemia and carotid stenosis. Lipids 30, 1179–1183.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, K., Nohara, Y., Katayama, K. and Namiki, M., 1992. Sesame seed lignans and γ-tocopherol act synergistically to produce vitamin E activity in rats. The Journal of Nutrition 122, 2440–2446.

    PubMed  CAS  Google Scholar 

  • Yamada, Y., Obayashi, M., Ishikawa, T., Kiso, Y., Ono, Y. and Yamashita, K., 2008. Dietary Tocotrienol Reduces UVB-Induced Skin Damage and Sesamin Enhances Tocotrienol effects in Hairless Mice. The Journal Nutritional Science and Vitaminology 54, 117–123.

    Article  CAS  Google Scholar 

  • Yoshida, Y,. Niki, E. and Noguchi, N., 2003. Comparative study on the action of tocopherols and tocotrienols as antioxidant: chemical and physical effects. Chemistry and Physics of Lipids 123, 63–75.

    Article  PubMed  CAS  Google Scholar 

  • Weber, C., Podda, M., Rallis, M., Thele, J.J. Traber, M.G. and Packer, L., 1997. Efficacy of topically applied tocopherols and tocotrienols in protection of murine skin from oxidative damage induced by UV-irradiation. Free Radical biology and Medicine 22, 761–769.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Professor Miyazawa of Tohoku University for the generous permission to use his research group data in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yamashita .

Editor information

Victor R. Preedy

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Wageningen Academic Publishers

About this chapter

Cite this chapter

Yamashita, K. (2012). Dietary tocotrienol and UVB-induced skin damage. In: Preedy, V.R. (eds) Handbook of diet, nutrition and the skin. Human Health Handbooks no. 1, vol 2. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-729-5_10

Download citation

Publish with us

Policies and ethics