Skip to main content

Patterned Polymeric Surfaces to Study the Influence of Nanotopography on the Growth and Differentiation of Mesenchymal Stem Cells

  • Protocol
  • First Online:
Stem Cell Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1058))

Abstract

The implementation of micro- and nanotechnologies to biomaterials constitutes a unique platform to improve our understanding on microenvironmental regulation of stem cell functions. In the recent years, various methods have been developed for the fabrication of micro- and nanopatterned polymeric culture substrates, and many of these novel surfaces are opening possibilities for new applications. Here, we provide procedures for creating nanoscale topographic features on films of poly(lactic acid), a biodegradable polymer frequently used for the fabrication of tissue engineering scaffolds. In addition, we provide methods to assess the growth and differentiation of mesenchymal stem cells cultured on the substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lutolf MP, Gilbert PM, Blau HM (2009) Designing materials to direct stem-cell fate. Nat Rev Mol Cell Biol 462(7272):433–441

    CAS  Google Scholar 

  2. Edalat F, Bae H, Manoucheri S et al (2012) Engineering approaches toward deconstructing and controlling the stem cell environment. Ann Biomed Eng 40(6):1301–1315

    Article  PubMed  Google Scholar 

  3. Nikkhah M, Edalat F, Manoucheri S et al (2012) Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33(21):5230–5246

    Article  PubMed  CAS  Google Scholar 

  4. Piscioneri A, Campana C, Salerno S et al (2011) Biodegradable and synthetic membranes for the expansion and functional differentiation of rat embryonic liver cells. Acta Biomater 7(1):171–179

    Article  PubMed  CAS  Google Scholar 

  5. Di Nardo PD, Forte G, Franzese O et al (2009) Interfacing sca-1 pos mesenchymal stem cells with biocompatible scaffolds with different chemical composition and geometry. J Biomed Biotechnol 2009:910610

    PubMed  Google Scholar 

  6. Lee I-C, Lee Y-T, Yu B-Y et al (2009) The behavior of mesenchymal stem cells on micropatterned PLLA membranes. J Biomed Mater Res 91A(3):929–938

    Article  CAS  Google Scholar 

  7. Leonard DJ, Pick LT, Farrar DF et al (2009) The modification of PLA and PLGA using electron-beam radiation. J Biomed Mater Res 89A:567–574

    Article  CAS  Google Scholar 

  8. Cairns M-L, Dickson GR, Orr JF et al (2012) The potential of electron beam radiation for simultaneous surface modification and bioresorption control of PLLA. J Biomed Mater Res A 100A:2223–2229

    CAS  Google Scholar 

  9. Bernards DA, Desai TA (2010) Nanoscale porosity in polymer films: fabrication and therapeutic applications. Soft Matter 6(8):1621

    Article  PubMed  CAS  Google Scholar 

  10. Francois B, Pitois O, Francois J (1995) Polymer films with a self-organized honeycomb morphology. Adv Mater 7(12):1041–1044

    Article  CAS  Google Scholar 

  11. Fukuhira Y, Kitazono E, Hayashi T et al (2006) Biodegradable honeycomb-patterned film composed of poly(lactic acid) and dioleoylphosphatidylethanolamine. Biomaterials 27(9):1797–1802

    Article  PubMed  CAS  Google Scholar 

  12. Chaudhuri JB, Davidson MG, Ellis MJ et al (2008) Fabrication of honeycomb-structured poly(DL-lactide) and poly[(DL-lactide)-co-glycolide)] films and their use as scaffolds for osteoblast-like cell culture. Macromol Symp 272(1):52–57

    Article  CAS  Google Scholar 

  13. Foldberg S, Petersen M, Fojan P et al (2012) Patterned poly (lactic acid) films support growth and spontaneous multilineage gene expression of adipose-derived stem cells. Colloids Surf B Biointerfaces 93:92–99

    Article  PubMed  CAS  Google Scholar 

  14. Dalby MJ, Yarwood SJ, Riehle MO et al (2002) Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 276(1):1–9

    Article  PubMed  CAS  Google Scholar 

  15. Dolatshahi-Pirouz A, Pennisi CP, Skeldal S et al (2009) The influence of glancing angle deposited nano-rough platinum surfaces on the adsorption of fibrinogen and the proliferation of primary human fibroblasts. Nanotechnology 20(9):095101

    Article  PubMed  CAS  Google Scholar 

  16. Pennisi CP, Dolatshahi-Pirouz A, Foss M et al (2011) Nanoscale topography reduces fibroblast growth, focal adhesion size and migration-related gene expression on platinum surfaces. Colloids Surf B Biointerfaces 85(2):189–197

    Article  PubMed  CAS  Google Scholar 

  17. Fink T, Rasmussen JG, Lund P et al (2011) Isolation and expansion of adipose-derived stem cells for tissue engineering. Front Biosci 3:256–263

    Article  Google Scholar 

  18. Zachar V, Rasmussen JG, Fink T (2011) Isolation and growth of adipose tissue-derived stem cells. Methods Mol Biol 698:37–49

    Article  PubMed  CAS  Google Scholar 

  19. Fink T, Lund P, Pilgaard L et al (2008) Instability of standard PCR reference genes in adipose-derived stem cells during propagation, differentiation and hypoxic exposure. BMC Mol Biol 9:98

    Article  PubMed  Google Scholar 

  20. Lund P, Pilgaard L, Duroux M et al (2009) Effect of growth media and serum replacements on the proliferation and differentiation of adipose-derived stem cells. Cytotherapy 11(2):189–197

    Article  PubMed  CAS  Google Scholar 

  21. Yang S, Pilgaard L, Chase LG et al (2012) Defined xenogeneic-free and hypoxic environment provides superior conditions for long-term expansion of human adipose-derived stem cells. Tissue Eng Part C Methods 18(8):593–602

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Pennisi, C.P., Zachar, V., Fink, T., Gurevich, L., Fojan, P. (2013). Patterned Polymeric Surfaces to Study the Influence of Nanotopography on the Growth and Differentiation of Mesenchymal Stem Cells. In: Turksen, K. (eds) Stem Cell Nanotechnology. Methods in Molecular Biology, vol 1058. Humana Press, Totowa, NJ. https://doi.org/10.1007/7651_2013_10

Download citation

  • DOI: https://doi.org/10.1007/7651_2013_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-570-5

  • Online ISBN: 978-1-62703-571-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics