Skip to main content

Isolation, Culture, Cryopreservation, and Preparation of Skin-Derived Fibroblasts as a Final Cellular Product Under Good Manufacturing Practice–Compliant Conditions

  • Protocol
  • First Online:
Stem Cells and Good Manufacturing Practices

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2286))

Abstract

Cell-based therapies have become a popular approach in the field of regenerative medicine. Human fibroblast cells, one of the cell types widely used in clinical applications, have been used for skin regeneration and wound healing procedures. Furthermore, they are utilized for aesthetic purposes since fibroblasts lose their abilities such as collagen synthesis with age. Here, we describe detailed procedures for isolation, culture, cryopreservation, and preparation of fibroblasts derived from adult human skin as a final product under good manufacturing practice–compliant conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mao AS, Mooney DJ (2015) Regenerative medicine: current therapies and future directions. Proc Natl Acad Sci 112:14452–14459. https://doi.org/10.1073/pnas.1508520112

    Article  CAS  PubMed  Google Scholar 

  2. Mansbridge JN, Liu K, Pinney RE, Patch R, Ratcliffe A, Naughton GK (1999) Growth factors secreted by fibroblasts: role in healing diabetic foot ulcers. Diabetes Obes Metab 1:265–279. https://doi.org/10.1046/j.1463-1326.1999.00032.x

    Article  CAS  PubMed  Google Scholar 

  3. Costa-Almeida R, Gomez-Lazaro M, Ramalho C, Granja PL, Soares R, Guerreiro SG (2014) Fibroblast-endothelial partners for vascularization strategies in tissue engineering. Tissue Eng Part A 21:1055–1065. https://doi.org/10.1089/ten.TEA.2014.0443

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nolte SV, Xu W, Rennekampff H-O, Rodemann HP (2008) Diversity of fibroblasts—a review on implications for skin tissue engineering. Cells Tissues Organs 187:165–176. https://doi.org/10.1159/000111805

    Article  PubMed  Google Scholar 

  5. Sekiya EJ, Forte A, de Bellis Kühn TIB, Janz F, Bydlowski SP, Alves A (2012) Establishing a stem cell culture laboratory for clinical trials. Rev Bras Hematol Hemoter 34(3):236–241. https://doi.org/10.5581/1516-8484.20120057

    Article  PubMed  PubMed Central  Google Scholar 

  6. Whyte W (2010) Cleanroom technology: fundamentals of design, testing and operation. Wiley, Hoboken

    Google Scholar 

  7. De Sousa PA et al (2016) Development and production of good manufacturing practice grade human embryonic stem cell lines as source material for clinical application. Stem Cell Res 17:379–390. https://doi.org/10.1016/j.scr.2016.08.011

    Article  CAS  PubMed  Google Scholar 

  8. Lupatov AY, Vdovin AS, Vakhrushev IV, Poltavtseva RA, Yarygin KN (2015) Comparative analysis of the expression of surface markers on fibroblasts and fibroblast-like cells isolated from different human tissues. Bull Exp Biol Med 158:537–543. https://doi.org/10.1007/s10517-015-2803-2

    Article  CAS  PubMed  Google Scholar 

  9. Bieback K, Schallmoser K, Klüter H, Strunk D (2008) Clinical protocols for the isolation and expansion of mesenchymal stromal cells. Transfus Med Hemother 35:286–294. https://doi.org/10.1159/000141567

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aydoğdu, N., Öztel, O.N., Karaöz, E. (2020). Isolation, Culture, Cryopreservation, and Preparation of Skin-Derived Fibroblasts as a Final Cellular Product Under Good Manufacturing Practice–Compliant Conditions. In: Turksen, K. (eds) Stem Cells and Good Manufacturing Practices. Methods in Molecular Biology, vol 2286. Humana, New York, NY. https://doi.org/10.1007/7651_2020_333

Download citation

  • DOI: https://doi.org/10.1007/7651_2020_333

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1326-9

  • Online ISBN: 978-1-0716-1327-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics