Skip to main content

Protocol for Start-Up and Operation of CSTR Biogas Processes

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

There is currently a lack of consensus on how biogas processes should be started and run in order to obtain stable, efficient operation. Agreement on start-up and operating parameters would increase the quality of research, allow better comparison of scientific results and increase the applicability of new findings in a general perspective. It would also help full-scale operators avoid common costly mistakes during start-up and operation of biogas processes. The biogas protocol presented in this paper describes appropriate approaches for characterisation of substrate, determination of methane potential, formulation of a suitable substrate, start-up of reactors and monitoring and operation of the biogas process in CSTR reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamawand I (2015) Anaerobic digestion process and bio-energy in meat industry: a review and a potential. Renew Sust Energ Rev 44:37–51

    Article  CAS  Google Scholar 

  2. Murphy J, Braun R, Weiland P, Wellinger A (2011) Biogas from crop digestion. IEA Bioenergy Task 37

    Google Scholar 

  3. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  PubMed  Google Scholar 

  4. Vanholme B, Desmet T, Ronsse F, Rabaey K, Van Breusegem F, De Mey M, Soetaert W, Boerjan W (2013) Towards a carbon-negative sustainable bio-based economy. Front Plant Sci 4:1–17

    Article  Google Scholar 

  5. Alburquerque JA, de la Fuente C, Ferrer-Costa A, Carrasco L, Cegarra J, Abad M, Bernal MP (2012) Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenergy 40:181–189

    Article  CAS  Google Scholar 

  6. Nkoa R (2014) A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings. Agron Sustain Dev 34:473–492

    Article  Google Scholar 

  7. Mata-Alvarez J, Dosta J, Romero-Güiza MS, Fonoll X, Peces M, Astals S (2014) A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew Sust Energ Rev 36:412–427

    Article  CAS  Google Scholar 

  8. Appels L, Baeyens J, Degréve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781

    Article  CAS  Google Scholar 

  9. Amon T, Amon B, Kryvoruchko V, Machmüller A, Hopfner-Sixt K, Bodiroza V, Hrbek R, Friedel J, Pötsch E, Wagentristl H et al (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98:3204–3212

    Article  CAS  PubMed  Google Scholar 

  10. Rajendran K, Aslanzadeh S, Taherzadeh MJ (2015) Household biogas digesters—a review. Energies 5:2911–2942

    Article  CAS  Google Scholar 

  11. Lozanovski A, Lindner JP, Bos U (2014) Environmental evaluation and comparison of selected industrial scale biomethane production facilities across Europe. LCA Waste Manage Syst 19:1823–1832

    CAS  Google Scholar 

  12. Borjesson P, Tufvesson LM (2011) Agricultural crop-based biofuels - resource efficiency and environmental performance including direct land use changes. J Clean Prod 19:108–120

    Article  Google Scholar 

  13. Angelidaki I, Karakashev D, Batstone DJ, Plugge CM, Stams AJM (2011) Biomethanation and its potential. In: Rosenzweig AC, Ragsdale SW (eds) Methods in enzymology: methods in methane metabolism, vol 494. Elsevier Academic Press, San Diego, pp 327–351

    Chapter  Google Scholar 

  14. Worm P, Müller N, Plugge CM, Stams AJM, Schink B (2010) Syntrophy in methanogenic degradation. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea, vol 19. Springer, Berlin/Heidelberg, pp 149–173

    Chapter  Google Scholar 

  15. Nordell E, Nilsson B, Nilsson Påledal S, Karisalmi K, Moestedt J (2015) Co-digestion of manure and industrial waste - the effects of trace element addition. Waste Manage (In Press)

    Google Scholar 

  16. Moestedt J, Nordell E, Shakeri Yekta S, Lundgren J, Marti M, Sundberg C, Ejlertsson J, Svensson BH, Björn A (2015) Effects of trace elements addition on process stability during anaerobic co-digestion of OFMSW and slaughterhouse waste. Waste Manage (In Press)

    Google Scholar 

  17. Banks CJ, Zhang Y, Jiang Y, Heaven S (2012) Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour Technol 104:127–135

    Article  CAS  PubMed  Google Scholar 

  18. Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Article  CAS  PubMed  Google Scholar 

  19. Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from anaerobic digestion. Renew Sust Energ Rev 45:540–555

    Article  CAS  Google Scholar 

  20. Chen JL, Ortiz R, Steele TWJ, Stuckey DC (2014) Toxicants inhibiting anaerobic digestion: a review. Biotechnol Adv 32:1523–1534

    Article  PubMed  CAS  Google Scholar 

  21. Divya D, Gopinath LR, Christy M (2015) A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew Sust Energ Rev 42:690–699

    Article  CAS  Google Scholar 

  22. Sahlström L (2003) A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresour Technol 87:161–166

    Article  PubMed  Google Scholar 

  23. Risberg K (2015) Quality and function of anaerobic digestion residues. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  24. Moestedt J, Nordell E, Schnürer A (2014) Comparison of operating strategies for increased biogas production from thin stillage. J Biotechnol 175:22–30

    Article  CAS  PubMed  Google Scholar 

  25. Moestedt, J, Nordell E, Hallin S, Schnürer A (2016) Two stage anaerobic digestion for reduced hydrogen sulphide production. J Chem Technol Biotechnol 91(4):1055–1062

    Google Scholar 

  26. Grim J, Malmros P, Schnürer A, Nordberg Å (2015) Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant – heat demand and biogas production. Energy 79:419–427

    Article  Google Scholar 

  27. McLeod JD, Othman MZ, Beale DJ, Joshi D (2015) The use of laboratory scale reactors to predict sensitivity to changes in operating conditions for full-scale anaerobic digestion treating municipal sewage sludge. Bioresour Technol 189:384–390

    Article  CAS  PubMed  Google Scholar 

  28. Ruffino B, Fiore S, Roati C, Campo G, Novarino D, Zanetti M (2015) Scale effect of anaerobic digestion tests in fed-batch and semi-continuous mode for the technical and economic feasibility of a full scale digester. Bioresour Technol 182:302–313

    Article  CAS  PubMed  Google Scholar 

  29. Usack JG, Spirito CM, Angenent LT (2012) Continuously-stirred anaerobic digesters to convert organic wastes into biogas: system setup and basic operation. J Vis Exp 65, e3978

    Google Scholar 

  30. Dandikas V, Heuwinkel H, Lichti F, Drewes JE, Koch K (2014) Correlation between biogas yield and chemical composition of energy crops. Bioresour Technol 174:316–320

    Article  CAS  PubMed  Google Scholar 

  31. Cabbai V, Ballico M, Aneggi E, Goi D (2013) Bmp tests of source selected ofmsw to evaluate anaerobic codigestion with sewage sludge. Waste Manag 33:1626–1632

    Article  CAS  PubMed  Google Scholar 

  32. Moestedt J, Nilsson Påledal S, Schnürer A (2013) The effect of substrate and operational parameters on the abundance of sulphate-reducing bacteria in industrial anaerobic biogas digesters. Bioresour Technol 132:327–332

    Article  CAS  PubMed  Google Scholar 

  33. Raposo F, De la Rubia MA, Fernández-Cegrí V, Borja R (2012) Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew Sust Energ Rev 16:861–877

    Article  CAS  Google Scholar 

  34. Li Y, Zhang R, Liu G, Chen C, He Y, Liu X (2013) Comparison of methane production potential, biodegradability, and kinetics of different organic substrates. Bioresour Technol 149:565–569

    Article  CAS  PubMed  Google Scholar 

  35. Banks CJ, Heaven S (2013) Optimisation of biogas yields from anaerobic digestion by feedstock type. In: Wellinge A, Murphy J, Baxter D (eds). The Biogas hand book:Science an, production and applications. Woodhead publishing series in energy (Cambridge, UK). Issue 52, pp 131–165

    Google Scholar 

  36. Buswell AM, Mueller HF (1952) Mechanism of methane fermentation. Ind Eng Chem 44:550–552

    Article  CAS  Google Scholar 

  37. Sanders W, Angelidaki I (2004) Workshop on harmonization of anaerobic biodegrdation, activity and inhibition assays. Rev Environ Sci Biotechnol 3:91–158

    Article  Google Scholar 

  38. Strömberg S, Nistor M, Liu J (2014) Towards elimination systematic errors caused by the experimental conditions in biochemichal methane potential (bmp) tests. Waste Manag 34:1939–1948

    Article  PubMed  Google Scholar 

  39. Demirel B, Scherer P (2011) Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass Bioenergy 35:992–998

    Article  CAS  Google Scholar 

  40. Astals S, Nolla-Ardèvol V, Mata-Alvarez J (2012) Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: biogas and digestate. Bioresour Technol 110:63–70

    Article  CAS  PubMed  Google Scholar 

  41. Braun R, Wellinger A (2003) Potential of co-digestion. IEA Bioenergy Task 37, Technical brochure

    Google Scholar 

  42. Rajagopal R, Massé DI, Sing G (2013) A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresour Technol 143:632–641

    Article  CAS  PubMed  Google Scholar 

  43. Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev 38:383–392

    Article  CAS  Google Scholar 

  44. Hejnfelt AAI (2009) Anaerobic digestion of slaughterhouse by-products. Biomass Bioenergy 33:1046–1054

    Article  CAS  Google Scholar 

  45. Solli L, Bergersen O, Sørheim R, Briseid T (2014) Effects of a gradually increased load of fish waste silage in co-digestion with cow manure on methane production. Waste Manag 34:1553–1559

    Article  CAS  PubMed  Google Scholar 

  46. Nie H, Jacobi HF, Strach K, Xu C, Zhou H, Liebetrau J (2015) Mono-fermentation of chicken manure: ammonia inhibition and recirculation of the digestate. Bioresour Technol 178:238–246

    Article  CAS  PubMed  Google Scholar 

  47. Jansen S, Gonzalez-Gil G, van Leeuwen HP (2007) The impact of Co and Ni speciation on methanogenesis in sulfidic media - biouptake versus metal dissolution. Enzym Microb Technol 40:823–830

    Article  CAS  Google Scholar 

  48. Rasit N, Idris A, Harun R, Ghani WAWAK (2015) Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: an overview. Renew Sust Energ Rev 45:351–358

    Article  CAS  Google Scholar 

  49. Drosg B (2013) Process monitoring in biogas plants. IEA Bioenergy Task 37, Technical Brochure

    Google Scholar 

  50. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Khanal SK (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186

    Article  CAS  PubMed  Google Scholar 

  51. Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40:989–995

    Article  CAS  Google Scholar 

  52. Hagen LH, Vivekanand V, Linjordet R, Pope PB, Eijsink VH, Horn SJ (2014) Microbial community structure and dynamics during co-digestion of whey permeate and cow manure in continuous stirred tank reactor systems. Bioresour Technol 171:350–359

    Article  CAS  PubMed  Google Scholar 

  53. Risberg K, Sun L, Levén L, Horn SJ, Schnürer A (2013) Biogas production from wheat straw and manure – impact of pretreatment and process operating parameters. Bioresour Technol 149:232–237

    Article  CAS  PubMed  Google Scholar 

  54. Sun L, Pope PB, Eijsink VH, Schnürer A (2015) Characterization of microbial community structure during continuous anaerobic digestion of straw and cow manure. Microb Biotechnol 8:815

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vanwonterghem I, Jensen PD, Dennis PG, Hugenholtz P, Rabaey K, Tyson GW (2014) Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. ISME J 8:2015–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dhaked RK, Singh P, Singh L (2010) Biomethanation under psychrophilic conditions. Waste Manag 30:2490–2496

    Article  CAS  PubMed  Google Scholar 

  57. Westerholm M, Levén L, Schnürer A (2012) Bioaugmentation of syntrophic acetate-oxidising culture in biogas reactors exposed to increasing levels of ammonia. Appl Environ Microbiol 78:7619–7625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Estevez MM, Sapci Z, Linjordet R, Schnürer A, Morken J (2014) Semi-continuous anaerobic co-digestion of cow manure and steam-exploded salix with recirculation of liquid digestate. J Environ Manag 136:9–15

    Article  CAS  Google Scholar 

  59. Westerholm M, Hansson M, Schnürer A (2012) Improved biogas production from whole stillage by co-digestion with cattle manure. Bioresour Technol 114:314–319

    Article  CAS  PubMed  Google Scholar 

  60. Moestedt J, Malmborg J, Nordell E (2015) Determination of methane and carbon dioxide formation rate constants for semi-continuously fed anaerobic digesters. Energies 8:645–655

    Article  CAS  Google Scholar 

  61. Boe K, Angelidaki I (2012) Pilot-scale application of an online VFA sensor for monitoring and control of a manure digester. Water Sci Technol 66:2496–2503

    Article  CAS  PubMed  Google Scholar 

  62. Madsen M, Holm-Nielsen JB, Esbensen KH (2011) Monitoring of anaerobic digestion processes: a review perspective. Renew Sust Energ Rev 15:3141–3155

    Article  CAS  Google Scholar 

  63. Falk HM, Reichling P, Andersen C, Benz R (2015) Online monitoring of concentration and dynamics of volatile fatty acids in anaerobic digestion processes with mid-infrared spectroscopy. Bioprocess Biosyst Eng 38:237–249

    Article  CAS  PubMed  Google Scholar 

  64. Jonsson S, Borén H (2002) Analysis of mono- and diesters of o-phthalic acid by solid-phase extractions with polystyrene-divinylbenzene-based polymers. J Chromatogr A 963:393–400

    Article  CAS  Google Scholar 

  65. Lützhøft H-CH, Boe K, Fang C, Angelidaki I (2014) Comparison of vfa titration procedures used for monitoring the biogas process. Water Res 54:262–272

    Article  PubMed  CAS  Google Scholar 

  66. Hansen TL, Schmidt JE, Angelidaki I, Marca E, Jansen JC, Mosbæk H, Christensen TH (2004) Method for determination of methane potentials of solid organic waste. Waste Manag 24:393–400

    Article  CAS  PubMed  Google Scholar 

  67. Vahlberg C, Nordell E, Wiberg L; Schnürer A (2013) Method for correction of vfa loss in determination of dry matter in biomass. Swedish Gas Technology Centre: Malmö, 1102–7371

    Google Scholar 

  68. Zupancic GD, Ros M (2012) Determination of chemical oxygen demand in substrates from anaerobic treatment of solid organic waste. Wase Biomass Valor 3:89–98

    Article  CAS  Google Scholar 

  69. Agger J, Nilsen P, Eijsink VH, Horn S (2014) On the determination of water content in biomass processing. Bioenergy Res 7:442–449

    Article  CAS  Google Scholar 

  70. Vannecke TPW, Lampens DRA, Ekarna GA, Volcke EIP (2014) Evaluation of the 5 and 8 ph point titration methods for monitoring anaerobic digesters treating solid waste. Environ Technol 36:861–869

    Article  PubMed  CAS  Google Scholar 

  71. Esposito G, Frunzo L, Giordano A, Liotta F, Panico A, Pirozzi F (2012) Anaerobic co-digestion of organic wastes. Rev Environ Sci Biotechnol 11:325–341

    Article  CAS  Google Scholar 

  72. Liu DW, Zeng RJ, Angelidaki I (2008) Effects of ph and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 degrees c). Biotechnol Bioeng 100:1108–1114

    Article  CAS  PubMed  Google Scholar 

  73. Zhai N, Zhang T, Dongxue Y, Yang G, Wang X, Ren G, Feng Y (2015) Effect of initial ph on anaerobic co-digestion of kitchen waste and cow manure. Waste Manag 38:126–131

    Article  CAS  PubMed  Google Scholar 

  74. Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M (2013) Volatile fatty acids production from food waste: effects of ph, temperature, and organic loading rate. Bioresour Technol 143:525–530

    Article  CAS  PubMed  Google Scholar 

  75. Ripley LE, Boyle WC, Converse JC (1986) Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. J Water Pollut Control Fed 58(5):406–411

    Google Scholar 

  76. Lahav O, Morgan BE (2004) Titration methodologies for monitoring of anaerobic digestion in developing countries - a review. J Chem Technol Biotechnol 79:1331–1341

    Article  CAS  Google Scholar 

  77. Martín-González L, Font X, Vincent T (2013) Alkalinity ratios to identify process imbalances in anaerobic digesters treating source-sorted organic fraction of municipal wastes. Biochem Eng J 76:1–5

    Article  CAS  Google Scholar 

  78. Karlsson A, Ejlertsson J (2012) Addition of HCL as a means to improve biogas production from protein-rich food industry waste. Biochem Eng J 61:43–48

    Article  CAS  Google Scholar 

  79. Kleyböcker A, Liebrich M, Verstraete W, Kraume M, Würdemann H (2012) Early warning indicators for process failure due to organic overloading by rapeseed oil in one-stage continuously stirred tank reactor, sewage sludge and waste digesters. Bioresour Technol 123:534–541

    Article  PubMed  CAS  Google Scholar 

  80. Capri MG, Marais GVR (1975) Ph adjustment in anaerobic digestion. Water Res 9:307–313

    Article  CAS  Google Scholar 

  81. McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJ, Schink B, Rohlin L, Gunsalus RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58

    Article  CAS  PubMed  Google Scholar 

  82. Palatsi J, Laureni M, Andrés MV, Flotats X, Nielsen HB, Angelidaki I (2009) Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresour Technol 100:4588–4596

    Article  CAS  PubMed  Google Scholar 

  83. Silva SA, Cavaleiro AJ, Pereira MA, Stams AJM, Alves MM, Sousa DZ (2014) Long-term acclimation of anaerobic sludges for high-rate methanogenesis from LCFA. Biomass Bioenergy 67:297–303

    Article  CAS  Google Scholar 

  84. Cavaleiro AJ, Salvador AF, Alves JI, Alves M (2009) Continuous high rate anaerobic treatment of oleic acid based wastewater is possible after a step feeding start-up. Environ Sci Technol 43:2931–2936

    Article  CAS  PubMed  Google Scholar 

  85. Marchaum U, Krause C (1993) Propionic to acetic acid ratios in overloaded anaerobic digestion. Bioresour Technol 43:195–203

    Article  Google Scholar 

  86. Browne JD, Allen E, Murphy JD (2014) Assessing the variability in biomethane production from the organic fraction of municipal solid waste in batch and continuous operation. Appl Energy 128:307–314

    Article  CAS  Google Scholar 

  87. Lebuhn M, Liu F, Heuwinkel H, Gronauer A (2008) Biogas production from mono-digestion of maize silage-long-term process stability and requirements. Water Sci Technol 58:1645–1651

    Article  CAS  PubMed  Google Scholar 

  88. Gustavsson J, Svensson BH, Karlsson A (2011) The feasibility of trace element supplementation for stable operation of wheat stillage-fed biogas tank reactors. Water Sci Technol 64:320–325

    Article  CAS  PubMed  Google Scholar 

  89. Schattauer A, Abdoun E, Weiland P, Plöchl M, Heiermann M (2011) Abundance of trace elements in demonstration biogas plants. Biosyst Eng 108:57–65

    Article  Google Scholar 

  90. Gustavsson J, Yekta SS, Karlsson A, Skyllberg U, Svensson BH (2013) Potential bioavailability and chemical forms of co and ni in the biogas process-an evaluation based on sequential and acid volatile sulfide extractions. Eng Life Sci 13(6):572–579

    Google Scholar 

  91. Oleszkiewicz JA, Sharma VK (1990) Stimulation and inhibition of anaerobic processes by heavy metals: a review. Biol Wastes 31:45–67

    Article  CAS  Google Scholar 

  92. Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J 70:71–77

    Article  CAS  Google Scholar 

  93. Ortner M, Rachbauer L, Somitsch W, Fuchs W (2014) Can bioavailability of trace nutrients be measured in anaerobic digestion? Appl Energy 126:190–198

    Article  CAS  Google Scholar 

  94. Karlsson A, Einarsson P, Schnürer A, Sundberg C, Ejlertsson J, Svensson BH (2012) Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J Biosci Bioeng 114:446–452

    Article  CAS  PubMed  Google Scholar 

  95. Moestedt J (2015) Biogas production from thin stillage - exploring the microbial response to sulphate and ammonia. Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  96. Stams AJM, Oude Elferink SJWH, Westermann P (2003) Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. Adv Biochem Eng Biotechnol 81:31–56

    CAS  PubMed  Google Scholar 

  97. Raposo F, Fernandez-Cegri V, De la Rubia MA, Borja R, Beline F, Cavinato C, Demirer G, Fernandez B, Fernandez-Polanco M, Frigon JC et al (2011) Biochemical methane potential (bmp) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biotechnol 86:1088–1098

    Article  CAS  Google Scholar 

  98. Koch K, Bajón Fernández Y, Drewes JE (2015) Influence of headspace flushing on methane production in biochemical methane potential (bmp) tests. Bioresour Technol 186:173–178

    Article  CAS  PubMed  Google Scholar 

  99. Wellinger A, Murphy J, Baxter D (2013) Biogas handbook: science, production and application, vol 52. Woodhead Publishing Limited, Cambridge

    Book  Google Scholar 

  100. Naegele H-J, Mönch-Tegeder M, Haag NL, Oechsner H (2014) Effect of substrate pretreatment on particle size distribution in a full-scale research biogas plant. Bioresour Technol 172:396–402

    Article  CAS  PubMed  Google Scholar 

  101. Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106

    Article  CAS  Google Scholar 

  102. Montgomery LFR, Bochmann G (2014) Pretreatment of feedstock for enhanced biogas production. IEA Bioenergy Task 37, Technical brochure

    Google Scholar 

  103. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  PubMed  Google Scholar 

  104. Hansen KH, Angelidaki I, Ahring BK (1998) Anaerobic digestion of swine manure: inhibition by ammonia. Water Res 32:5–12

    Article  CAS  Google Scholar 

  105. Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911

    Article  CAS  Google Scholar 

  106. de Baere LA, Devocht M, van Assche P, Verstraete W (1984) Influence of high NaCL and NH4CL salt levels on methanogenic associations. Water Res 18:543–548

    Article  Google Scholar 

  107. Hashimoto AG (1986) Ammonia inhibition of methanogenesis from cattle wastes. Agric Wastes 17:241–261

    Article  CAS  Google Scholar 

  108. van Velsen AFM (1979) Adaption of methanogenic sludge to high ammonia-nitrogen concentrations. Water Residue 13:995–999

    Article  Google Scholar 

  109. Sun L, Müller B, Westerholm M, Schnürer A (2014) Syntrophic acetate oxidation in industrial CSTR biogas digesters. J Biotechnol 171:39–44

    Article  CAS  PubMed  Google Scholar 

  110. Rosenfeld JS (2002) Functional redundancy in ecology and conservation. Oikos 98:156–162

    Article  Google Scholar 

  111. De Vrieze J, Gildemyn S, Vilchez-Vargas R, Jáuregui R, Pieper D, Verstraete W, Boon N (2015) Inoculum selection is crucial to ensure operational stability in anaerobic digestion. Appl Microbiol Biotechnol 99:189–199

    Article  PubMed  CAS  Google Scholar 

  112. Gu Y, Chen X, Liu Z, Zhou X, Zhang Y (2014) Effect of inoculum sources on the anaerobic digestion of rice straw. Bioresour Technol 158:149–155

    Article  CAS  PubMed  Google Scholar 

  113. Nuchdan S, Khemkhao M, Techkarnjanaruk S, Phalakornkule C (2015) Comparative biochemical methane potential of paragrass using an unacclimated and an acclimated microbial consortium. Bioresour Technol 183:111–119

    Article  CAS  Google Scholar 

  114. Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol 102:2255–2264

    Article  CAS  PubMed  Google Scholar 

  115. Labatut RA, Angenent LT, Scott NR (2014) Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-off between performance and stability? Water Res 53:249–258

    Article  CAS  PubMed  Google Scholar 

  116. Moset V, Bertolini E, Cerisuelo A, Cambra M, Olmos A, Cambra-López M (2014) Start-up strategies for thermophilic anaerobic digestion of pig manure. Energy 74:389–395

    Article  CAS  Google Scholar 

  117. Golkowska K, Greger M (2013) Anaerobic digestion of maize and cellulose under thermophilic and mesophilic conditions - a comparative study. Biomass Bioenergy 56:545–554

    Article  CAS  Google Scholar 

  118. Bagge E, Sahlström L, Albihn A (2005) The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Res 39:4879–4886

    Article  CAS  PubMed  Google Scholar 

  119. Brambilla M, Romano E, Cutini M, Pari L, Bisaglia C (2013) Rheological properties of manure/biomass mixtures and pumping strategies to improve ingestate formulation: a review. Trans ASABE 56:1905–1920

    Google Scholar 

  120. Leven L, Nyberg K, Schnurer A (2013) Conversion of phenols during anaerobic digestion of organic solid waste--a review of important microorganisms and impact of temperature. J Environ Manage 95(Suppl):S99–S103

    Google Scholar 

  121. Lindorfer H, Waltenberg R, Köller K, Braun R, Kirchmayr R (2008) New data on temperature optimum and temperature changes in energy crop digesters. Bioresour Technol 99:7011–7019

    Article  CAS  PubMed  Google Scholar 

  122. Ziembinska-Buczynska A, Banach A, Bacza T, Pieczykolan M (2014) Diversity and variability of methanogens during the shift from mesophilic to thermophilic conditions while biogas production. World J Microbiol Biotechnol 30:3047–3053

    Article  CAS  PubMed  Google Scholar 

  123. Dinsdale RM, Hawkes FR, Hawkes DL (1997) Comparison of mesophilic and thermophilic upflow anaerobic sludge blanket reactors treating instant coffee production wastewater. Water Res 31:163–169

    Article  CAS  Google Scholar 

  124. Lindmark J, Thorin E, Fdhila RB, Dahlquist E (2014) Effects of mixing on the result of anaerobic digestion: review. Renew Sust Energ Rev 40:1030–1047

    Article  CAS  Google Scholar 

  125. Li C, Champagne P, Anderson BC (2013) Biogas production performance of mesophilic and thermophilic anaerobic co-digestion with fat, oil, and grease in semi-continuous flow digesters: Effects of temperature, hydraulic retention time, and organic loading rate. Environ Technol 34:2125–2133

    Article  CAS  PubMed  Google Scholar 

  126. Mauky E, Jacobi HF, Liebetrau J, Nelles M (2015) Flexible biogas production for demand-driven energy supply – feeding strategies and types of substrates. Bioresour Technol 178:262–269

    Article  CAS  PubMed  Google Scholar 

  127. De Vrieze J, Verstraete W, Boon N (2013) Repeated pulse feeding induces functional stability in anaerobic digestion. Microb Biotechnol 6:414–424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Lv Z, Leite AF, Harms H, Richnow HH, Liebetrau J, Nikolausz M (2014) Influences of the substrate feeding regime on methanogenic activity in biogas reactors approached by molecular and stable isotope methods. Anaerobe 29:91–99

    Article  CAS  PubMed  Google Scholar 

  129. Moestedt J, Nilsson Påledal S, Schnûrer A, Nordell E (2013) Biogas production from thin stillage on an industrial scale—experience and optimisation. Energies 6:5642–5655

    Article  CAS  Google Scholar 

  130. Boe K, Batstone DJ, Steyer J-P, Angelidaki I (2010) State indicators for monitoring the anaerobic digestion process. Water Res 44:5973–5980

    Article  CAS  PubMed  Google Scholar 

  131. van der Veen A, Fermoso FG, Lens PNL (2007) Bonding form of metals and sulfur fractionation in methanol-grown anaerobic granular sludge. Eng Life Sci 7:480–489

    Article  CAS  Google Scholar 

  132. Ek A, Hallin S, Vallin L, Schnürer A, Karlsson M (2011) Slaughterhouse waste co-digestion - experiences from 15 years of full-scale operation. In: Proceedings of World Renewable Energy Congress. Linköping

    Google Scholar 

  133. Van der Zee F, Villaverde S, Garcia PA, Fdz-Polanco M (2007) Sulfide removal by moderate oxygenation of anaerobic sludge environments. Bioresour Technol 98:518–524

    Article  PubMed  CAS  Google Scholar 

  134. Ramirez M, Fernandez M, Granada C, Le Borgne S, Gomez JM, Cantero D (2011) Biofiltration of reduced sulphur compounds and community analysis of sulphur-oxidizing bacteria. Bioresour Technol 102:4047–4053

    Article  CAS  PubMed  Google Scholar 

  135. Ruile S, Schmitz S, Mönch-Tegeder M, Oechsner H (2015) Degradation efficiency of agricultural biogas plants – a full-scale study. Bioresour Technol 178:341–349

    Article  CAS  PubMed  Google Scholar 

  136. Romero-Güiza MS, Vila J, Mata-Alvarez M, Chimenos JM, Astal S (2016) The role of additives on anaerobic digestion: a review. Renew Sustain Energy Rev 58:1486–1499

    Google Scholar 

  137. Choong YY, Norli I, Abdullah AZ, Yhaya MF (2016) Impacts of trace element supplementation on the performance of anaerobic digestion process: a critical review. Biores Technol 209:369–379

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Schnürer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Schnürer, A., Bohn, I., Moestedt, J. (2016). Protocol for Start-Up and Operation of CSTR Biogas Processes. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_214

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_214

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53113-6

  • Online ISBN: 978-3-662-53115-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics