Skip to main content

Chemical Methods for Monitoring Protein Fatty Acylation

  • Protocol
  • First Online:
Chemical and Synthetic Approaches in Membrane Biology

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 662 Accesses

Abstract

Protein fatty acylation encompasses different forms of lipidation and plays critical roles in regulating protein membrane binding and trafficking, stability, and activity. Due to the importance of protein fatty acylation in many different biological processes, there has been significant interest in sensitive detection and enrichment methods. To facilitate the analysis of protein fatty acylation in biology, fatty acid analogs bearing alkyne or azide tags have been developed that enable fluorescent imaging and proteomic profiling of modified proteins using bioorthogonal chemistry methods. In this chapter, we will briefly introduce various kinds of protein fatty acylation, their regulation and function, as well as associations with human diseases. The focus of the chapter will be on metabolic labeling using chemical reporters of protein fatty acylation and other complementary approaches to analyze protein S-fatty acylation, including ABE, acyl-RAC, and acyl-PEG exchange methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hang HC, Linder ME (2011) Exploring protein lipidation with chemical biology. Chem Rev 111:6341–6358. doi:10.1021/cr2001977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Resh MD (2006) Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol 2:584–590. doi:10.1038/nchembio834

    Article  CAS  PubMed  Google Scholar 

  3. Blaskovic S, Blanc M, van der Goot FG (2013) What does S-palmitoylation do to membrane proteins? FEBS J 280:2766–2774. doi:10.1111/febs.12263

    Article  CAS  PubMed  Google Scholar 

  4. Kovacs-Simon A, Titball RW, Michell SL (2011) Lipoproteins of bacterial pathogens. Infect Immun 79:548–561. doi:10.1128/IAI.00682-10

    Article  CAS  PubMed  Google Scholar 

  5. Al-Quadan T, Price CT, London N et al (2011) Anchoring of bacterial effectors to host membranes through host-mediated lipidation by prenylation: a common paradigm. Trends Microbiol. doi:10.1038/nrclinonc.2015.209

    PubMed  Google Scholar 

  6. Maurer-Stroh S, Eisenhaber F (2004) Myristoylation of viral and bacterial proteins. Trends Microbiol 12:178–185. doi:10.1016/j.tim.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  7. Bologna G, Yvon C, Duvaud S, Veuthey A-L (2004) N-Terminal myristoylation predictions by ensembles of neural networks. Proteomics 4:1626–1632. doi:10.1002/pmic.200300783

    Article  CAS  PubMed  Google Scholar 

  8. Podell S, Gribskov M (2004) Predicting N-terminal myristoylation sites in plant proteins. BMC Genomics 5:37. doi:10.1186/1471-2164-5-37

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang X-B, Wu L-Y, Wang Y-C, Deng N-Y (2009) Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs. Protein Eng Des Sel PEDS 22:707–712. doi:10.1093/protein/gzp055

    Article  CAS  PubMed  Google Scholar 

  10. Ren J, Wen L, Gao X et al (2008) CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 21:639–644. doi:10.1093/protein/gzn039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xue Y, Chen H, Jin C et al (2006) NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm. BMC Bioinformatics 7:458. doi:10.1186/1471-2105-7-458

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kumari B, Kumar R, Kumar M (2014) PalmPred: an SVM based palmitoylation prediction method using sequence profile information. PLoS One 9, e89246. doi:10.1371/journal.pone.0089246

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shi S-P, Sun X-Y, Qiu J-D et al (2013) The prediction of palmitoylation site locations using a multiple feature extraction method. J Mol Graph Model 40:125–130. doi:10.1016/j.jmgm.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  14. Maurer-Stroh S, Eisenhaber F (2005) Refinement and prediction of protein prenylation motifs. Genome Biol 6:R55. doi:10.1186/gb-2005-6-6-r55

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berthiaume L, Peseckis SM, Resh MD (1995) Synthesis and use of iodo-fatty acid analogs. Methods Enzymol 250:454–466

    Article  CAS  PubMed  Google Scholar 

  16. Schlesinger MJ, Magee AI, Schmidt MF (1980) Fatty acid acylation of proteins in cultured cells. J Biol Chem 255:10021–10024

    CAS  PubMed  Google Scholar 

  17. Hang HC, Wilson JP, Charron G (2011) Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking. Acc Chem Res 44:699–708. doi:Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t

    Google Scholar 

  18. Grammel M, Hang HC (2013) Chemical reporters for biological discovery. Nat Chem Biol. doi:10.1038/nchembio.1296

    PubMed  PubMed Central  Google Scholar 

  19. Prescher JA, Bertozzi CR (2005) Chemistry in living systems. Nat Chem Biol 1:13–21. doi:10.1038/nchembio0605-13

    Article  CAS  PubMed  Google Scholar 

  20. Charron G, Zhang MM, Yount JS et al (2009) Robust fluorescent detection of protein fatty-acylation with chemical reporters. J Am Chem Soc 131:4967–4975. doi:10.1021/ja810122f

    Article  CAS  PubMed  Google Scholar 

  21. Charron G, Wilson J, Hang HC (2009) Chemical tools for understanding protein lipidation in eukaryotes. Curr Opin Chem Biol 13:382–391. doi:Review

    Google Scholar 

  22. Hannoush RN, Arenas-Ramirez N (2009) Imaging the lipidome: ω-alkynyl fatty acids for detection and cellular visualization of lipid-modified proteins. ACS Chem Biol 4:581–587. doi:10.1021/cb900085z

    Article  CAS  PubMed  Google Scholar 

  23. Yount JS, Charron G, Hang HC (2011) Bioorthogonal proteomics of 15-hexadecynyloxyacetic acid chemical reporter reveals preferential targeting of fatty acid modified proteins and biosynthetic enzymes. Bioorg Med Chem. doi:10.1016/j.bmc.2011.03.062

    PubMed  Google Scholar 

  24. Hang HC, Geutjes E-J, Grotenbreg G et al (2007) Chemical probes for the rapid detection of fatty-acylated proteins in mammalian cells. J Am Chem Soc 129:2744–2745. doi:10.1021/ja0685001

    Article  CAS  PubMed  Google Scholar 

  25. Kostiuk MA, Corvi MM, Keller BO et al (2008) Identification of palmitoylated mitochondrial proteins using a bio-orthogonal azido-palmitate analogue. FASEB J Off Publ Fed Am Soc Exp Biol 22:721–732. doi:10.1096/fj.07-9199com

    CAS  Google Scholar 

  26. Heal WP, Wickramasinghe SR, Leatherbarrow RJ, Tate EW (2008) N-Myristoyl transferase-mediated protein labelling in vivo. Org Biomol Chem 6:2308–2315. doi:10.1039/b803258k

    Article  CAS  PubMed  Google Scholar 

  27. Martin DDO, Vilas GL, Prescher JA et al (2008) Rapid detection, discovery, and identification of post-translationally myristoylated proteins during apoptosis using a bio-orthogonal azidomyristate analog. FASEB J 22:797–806. doi:10.1096/fj.07-9198com

    Article  CAS  PubMed  Google Scholar 

  28. Heal WP, Wickramasinghe SR, Bowyer PW et al (2008) Site-specific N-terminal labelling of proteins in vitro and in vivo using N-myristoyl transferase and bioorthogonal ligation chemistry. Chem Commun 480–482. doi:10.1039/B716115H

  29. Yount JS, Moltedo B, Yang Y-Y et al (2010) Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat Chem Biol 6:610–614. doi:10.1038/nchembio.405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang MM, Tsou LK, Charron G et al (2010) Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc Natl Acad Sci U S A 107:8627–8632. doi:10.1073/pnas.0912306107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martin BR, Wang C, Adibekian A et al (2012) Global profiling of dynamic protein palmitoylation. Nat Methods 9:84–89. doi:10.1038/nmeth.1769

    Article  CAS  Google Scholar 

  32. Thinon E, Hang HC (2015) Chemical reporters for exploring protein acylation. Biochem Soc Trans 43:253–261. doi:10.1042/BST20150004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jiang H, Khan S, Wang Y et al (2013) SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496:110–113. doi:10.1038/nature12038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Drisdel RC, Green WN (2004) Labeling and quantifying sites of protein palmitoylation. Biotechniques 36:276–285

    CAS  PubMed  Google Scholar 

  35. Roth AF, Wan J, Bailey AO et al (2006) Global analysis of protein palmitoylation in yeast. Cell 125:1003–1013. doi:10.1016/j.cell.2006.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kang R, Wan J, Arstikaitis P et al (2008) Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature 456:904–909. doi:10.1038/nature07605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang W, Vizio DD, Kirchner M et al (2010) Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes. Mol Cell Proteomics 9:54–70. doi:10.1074/mcp.M800448-MCP200

    Article  CAS  PubMed  Google Scholar 

  38. Forrester MT, Thompson JW, Foster MW et al (2009) Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat Biotechnol 27:557–559. doi:10.1038/nbt.1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Forrester MT, Hess DT, Thompson JW et al (2011) Site-specific analysis of protein S-acylation by resin-assisted capture. J Lipid Res 52:393–398. doi:10.1194/jlr.D011106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ren W, Jhala US, Du K (2013) Proteomic analysis of protein palmitoylation in adipocytes. Adipocyte 2:17–28. doi:10.4161/adip.22117

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhou B, An M, Freeman MR, Yang W (2014) Technologies and challenges in proteomic analysis of protein S-acylation. J Proteomics Bioinform 7:256–263. doi:10.4172/jpb.1000327

    Article  PubMed  PubMed Central  Google Scholar 

  42. Guo J, Gaffrey MJ, Su D et al (2014) Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications. Nat Protoc 9:64–75. doi:10.1038/nprot.2013.161

    Article  CAS  PubMed  Google Scholar 

  43. Percher A, Ramakrishnan S, Thinon E et al (2016) Mass-tag labeling reveals site-specific and endogenous levels of protein S-fatty acylation. Proc Natl Acad Sci U S A 113:4302–4307. doi:10.1073/pnas.1602244113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Howie J, Reilly L, Fraser NJ et al (2014) Substrate recognition by the cell surface palmitoyl transferase DHHC5. Proc Natl Acad Sci 111:17534–17539. doi:10.1073/pnas.1413627111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chamberlain LH, Shipston MJ (2015) The physiology of protein S-acylation. Physiol Rev 95:341–376. doi:10.1152/physrev.00032.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Liang X, Nazarian A, Erdjument-Bromage H et al (2001) Heterogeneous fatty acylation of Src family kinases with polyunsaturated fatty acids regulates raft localization and signal transduction. J Biol Chem 276:30987–30994. doi:10.1074/jbc.M104018200

    Article  CAS  PubMed  Google Scholar 

  47. O’Brien PJ, Zatz M (1984) Acylation of bovine rhodopsin by [3H]palmitic acid. J Biol Chem 259:5054–5057

    PubMed  Google Scholar 

  48. Linder ME, Middleton P, Hepler JR et al (1993) Lipid modifications of G proteins: alpha subunits are palmitoylated. Proc Natl Acad Sci U S A 90:3675–3679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Paige LA, Nadler MJ, Harrison ML et al (1993) Reversible palmitoylation of the protein-tyrosine kinase p56lck. J Biol Chem 268:8669–8674

    CAS  PubMed  Google Scholar 

  50. Buss JE, Sefton BM (1986) Direct identification of palmitic acid as the lipid attached to p21ras. Mol Cell Biol 6:116–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hess DT, Slater TM, Wilson MC, Skene JH (1992) The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS. J Neurosci Off J Soc Neurosci 12:4634–4641

    CAS  Google Scholar 

  52. Magee AI, Gutierrez L, McKay IA et al (1987) Dynamic fatty acylation of p21N-ras. EMBO J 6:3353–3357

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Rocks O, Peyker A, Kahms M et al (2005) An acylation cycle regulates localization and activity of palmitoylated ras isoforms. Science 307:1746–1752. doi:10.1126/science.1105654

    Article  CAS  PubMed  Google Scholar 

  54. Rocks O, Gerauer M, Vartak N et al (2010) The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins. Cell 141:458–471. doi:10.1016/j.cell.2010.04.007

    Article  CAS  PubMed  Google Scholar 

  55. Zuckerman DM, Hicks SW, Charron G et al (2011) Differential regulation of two palmitoylation sites in the cytoplasmic tail of the beta1-adrenergic receptor. J Biol Chem 286:19014–19023. doi:10.1074/jbc.M110.189977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidt MFG, Schlesinger MJ (1979) Fatty acid binding to vesicular stomatitis virus glycoprotein: a new type of post-translational modification of the viral glycoprotein. Cell 17:813–819. doi:10.1016/0092-8674(79)90321-0

    Article  CAS  PubMed  Google Scholar 

  57. Bartels DJ, Mitchell DA, Dong X, Deschenes RJ (1999) Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Mol Cell Biol 19:6775–6787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Deschenes RJ, Broach JR (1987) Fatty acylation is important but not essential for Saccharomyces cerevisiae RAS function. Mol Cell Biol 7:2344–2351. doi:10.1128/MCB.7.7.2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ (2006) Thematic review series: Lipid Posttranslational Modifications. Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47:1118–1127. doi:10.1194/jlr.R600007-JLR200

    Article  CAS  PubMed  Google Scholar 

  60. Zhang MM, Wu P-YJ, Kelly FD et al (2013) Quantitative control of protein S-palmitoylation regulates meiotic entry in fission yeast. PLoS Biol 11, e1001597. doi:10.1371/journal.pbio.1001597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fukata M, Fukata Y, Adesnik H et al (2004) Identification of PSD-95 palmitoylating enzymes. Neuron 44:987–996. doi:10.1016/j.neuron.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  62. Korycka J, Łach A, Heger E et al (2012) Human DHHC proteins: a spotlight on the hidden player of palmitoylation. Eur J Cell Biol 91:107–117. doi:10.1016/j.ejcb.2011.09.013

    Article  CAS  PubMed  Google Scholar 

  63. Peng T, Thinon E, Hang HC (2016) Proteomic analysis of fatty-acylated proteins. Curr Opin Chem Biol 30:77–86. doi:10.1016/j.cbpa.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  64. Farazi TA, Waksman G, Gordon JI (2001) The biology and enzymology of protein N-myristoylation. J Biol Chem 276:39501–39504. doi:10.1074/jbc.R100042200

    Article  CAS  PubMed  Google Scholar 

  65. Bhatnagar RS, Fütterer K, Farazi TA et al (1998) Structure of N-myristoyltransferase with bound myristoylCoA and peptide substrate analogs. Nat Struct Mol Biol 5:1091–1097. doi:10.1038/4202

    Article  CAS  Google Scholar 

  66. Matsubara M, Titani K, Taniguchi H, Hayashi N (2003) Direct involvement of protein myristoylation in myristoylated alanine-rich C kinase substrate (MARCKS)-calmodulin interaction. J Biol Chem 278:48898–48902. doi:10.1074/jbc.M305488200

    Article  CAS  PubMed  Google Scholar 

  67. Nagar B, Hantschel O, Young MA et al (2003) Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112:859–871. doi:10.1016/S0092-8674(03)00194-6

    Article  CAS  PubMed  Google Scholar 

  68. Martin DDO, Beauchamp E, Berthiaume LG (2011) Post-translational myristoylation: fat matters in cellular life and death. Biochimie 93:18–31. doi:10.1016/j.biochi.2010.10.018

    Article  CAS  PubMed  Google Scholar 

  69. Thinon E, Serwa RA, Broncel M et al (2014) Global profiling of co- and post-translationally N-myristoylated proteomes in human cells. Nat Commun 5:4919. doi:10.1038/ncomms5919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Patwardhan P, Resh MD (2010) Myristoylation and membrane binding regulate c-Src stability and kinase activity. Mol Cell Biol 30:4094–4107. doi:10.1128/MCB.00246-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zha J, Weiler S, Oh KJ et al (2000) Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290:1761–1765

    Article  CAS  PubMed  Google Scholar 

  72. Vilas GL, Corvi MM, Plummer GJ et al (2006) Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proc Natl Acad Sci 103:6542–6547. doi:10.1073/pnas.0600824103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sakurai N, Utsumi T (2006) Posttranslational N-myristoylation is required for the anti-apoptotic activity of human tGelsolin, the C-terminal caspase cleavage product of human gelsolin. J Biol Chem 281:14288–14295. doi:10.1074/jbc.M510338200

    Article  CAS  PubMed  Google Scholar 

  74. Nimchuk Z, Marois E, Kjemtrup S et al (2000) Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several Type III effector proteins from Pseudomonas syringae. Cell 101:353–363. doi:10.1016/S0092-8674(00)80846-6

    Article  CAS  PubMed  Google Scholar 

  75. Burnaevskiy N, Peng T, Reddick LE et al (2015) Myristoylome profiling reveals a concerted mechanism of ARF GTPase deacylation by the bacterial protease IpaJ. Mol Cell 58:110–122. doi:10.1016/j.molcel.2015.01.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Burnaevskiy N, Fox TG, Plymire DA et al (2013) Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ. Nature 496:106–109. doi:10.1038/nature12004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takada R, Satomi Y, Kurata T et al (2006) Monounsaturated fatty acid modification of Wnt protein: its role in Wnt secretion. Dev Cell 11:791–801. doi:10.1016/j.devcel.2006.10.003

    Article  CAS  PubMed  Google Scholar 

  78. Gao X, Hannoush RN (2014) Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat Chem Biol 10:61–68. doi:10.1038/nchembio.1392

    Article  CAS  PubMed  Google Scholar 

  79. Yang J, Brown MS, Liang G et al (2008) Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132:387–396. doi:10.1016/j.cell.2008.01.017

    Article  CAS  PubMed  Google Scholar 

  80. Gutierrez JA, Solenberg PJ, Perkins DR et al (2008) Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci 105:6320–6325. doi:10.1073/pnas.0800708105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Branton WD, Rudnick MS, Zhou Y et al (1993) Fatty acylated toxin structure. Nature 365:496–497. doi:10.1038/365496a0

    Article  CAS  PubMed  Google Scholar 

  82. Zou C, Ellis BM, Smith RM et al (2011) Acyl-CoA:Lysophosphatidylcholine Acyltransferase I (Lpcat1) catalyzes histone protein O-palmitoylation to regulate mRNA synthesis. J Biol Chem 286:28019–28025. doi:10.1074/jbc.M111.253385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Berthiaume LG (2014) Wnt acylation: seeing is believing. Nat Chem Biol 10:5–7. doi:10.1038/nchembio.1414

    Article  CAS  PubMed  Google Scholar 

  84. Stevenson FT, Bursten SL, Locksley RM, Lovett DH (1992) Myristyl acylation of the tumor necrosis factor alpha precursor on specific lysine residues. J Exp Med 176:1053–1062. doi:10.1084/jem.176.4.1053

    Article  CAS  PubMed  Google Scholar 

  85. Stevenson FT, Bursten SL, Fanton C et al (1993) The 31-kDa precursor of interleukin 1 alpha is myristoylated on specific lysines within the 16-kDa N-terminal propiece. Proc Natl Acad Sci 90:7245–7249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Feldman JL, Baeza J, Denu JM (2013) Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J Biol Chem 288:31350–31356. doi:10.1074/jbc.C113.511261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Teng Y-B, Jing H, Aramsangtienchai P et al (2015) Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies. Sci Rep 5:8529. doi:10.1038/srep08529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard C. Hang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yuan, X., Hang, H.C. (2016). Chemical Methods for Monitoring Protein Fatty Acylation. In: Shukla, A. (eds) Chemical and Synthetic Approaches in Membrane Biology. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/8623_2016_3

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6835-0

  • Online ISBN: 978-1-4939-6836-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics