Skip to main content

The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants

  • Protocol
  • First Online:
Plant Epigenetics and Epigenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2093))

Abstract

Dosage effects in plants are caused by changes in the copy number of chromosomes, segments of chromosomes, or multiples of individual genes. Genes often exhibit a dosage effect in which the amount of product is closely correlated with the number of copies present. However, when larger segments of chromosomes are varied, there are trans-acting effects across the genome that are unleashed that modulate gene expression in cascading effects. These appear to be mediated by the stoichiometric relationship of gene regulatory machineries. There are both positive and negative modulations of target gene expression, but the latter is the plurality effect. When this inverse effect is combined with a dosage effect, compensation for a gene can occur in which its expression is similar to the normal diploid regardless of the change in chromosomal dosage. In contrast, changing the whole genome in a polyploidy series has fewer relative effects as the stoichiometric relationship is not disrupted. Together, these observations suggest that the stoichiometry of gene regulation is important as a reflection of the mode of assembly of the individual subunits involved in the effective regulatory macromolecular complexes. This principle has implications for gene expression mechanisms, quantitative trait genetics, and the evolution of genes depending on the mode of duplication, either segmentally or via whole-genome duplication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blakeslee AF, Belling J, Farnham ME (1920) Chromosomal duplication and Mendelian phenomena in Datura mutants. Science 52:388–390

    Article  CAS  PubMed  Google Scholar 

  2. Sinnott EW, Blakeslee AF (1922) Structural changes associated with factor mutations and with chromosome mutations in Datura. Proc Natl Acad Sci U S A 8:17–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bridges CB (1925) Sex in relation to chromosomes and genes. Am Nat 59:127–137

    Article  Google Scholar 

  4. Blakeslee AF (1934) New Jimson weeds from old chromosomes. J Hered 24:80–108

    Google Scholar 

  5. Birchler JA, Veitia RA (2012) Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proc Natl Acad Sci U S A 109:14746–14753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Birchler JA, Riddle NC, Auger DL, Veitia RA (2005) Dosage balance in gene regulation: biological implications. Trends Genet 21:219–226

    Article  CAS  PubMed  Google Scholar 

  7. Birchler JA, Veitia RA (2007) The gene balance hypothesis: from classical genetics to modern genomics. Plant Cell 19:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Veitia RA, Bottani S, Birchler JA (2008) Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet 24:390–397

    Article  CAS  PubMed  Google Scholar 

  9. Bray D, Lay S (1997) Computer-based analysis of the binding steps in protein complex formation. Proc Natl Acad Sci U S A 94:13493–13498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Veitia RA (2002) Exploring the etiology of haploinsufficiency. BioEssays 24:175–184

    Article  CAS  PubMed  Google Scholar 

  11. Birchler JA (1979) A study of enzyme activities in a dosage series of the long arm of chromosome one in maize. Genetics 92:1211–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Birchler JA, Newton KJ (1981) Modulation of protein levels in chromosomal dosage series of maize: the biochemical basis of aneuploid syndromes. Genetics 99:247–266

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Birchler JA (1981) The genetic basis of dosage compensation of Alcohol dehydrogenase-1 in maize. Genetics 97:625–637

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Guo M, Davis D, Birchler JA (1996) Dosage effects on gene expression in a maize ploidy series. Genetics 142:1349–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yao H, Kato A, Mooney B, Birchler JA (2011) Phenotypic and gene expression analyses of a ploidy series of maize inbred Oh43. Plant Mol Biol 75:237–251

    Article  CAS  PubMed  Google Scholar 

  16. Robinson DO, Coate JE, Singh A, Long L, Bush M, Doyle JJ, Roeder AHK (2018) Ploidy and size at multiple scales in the Arabidopsis sepal. Plant Cell 30:2308–2329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guo M, Birchler JA (1994) Trans-acting dosage effects on the expression of model gene systems in maize aneuploids. Science 266:1999–2002

    Article  CAS  PubMed  Google Scholar 

  18. Rabinow L, Nguyen-Huynh AT, Birchler JA (1991) A trans-acting regulatory gene that inversely affects the expression of the white, brown and scarlet loci in Drosophila melanogaster. Genetics 129:463–480

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Birchler JA, Bhadra U, Pal Bhadra M, Auger DL (2001) Dosage dependent gene regulation in multicellular eukaryotes: implications for dosage compensation, aneuploid syndromes and quantitative traits. Dev Biol 234:275–288

    Article  CAS  PubMed  Google Scholar 

  20. Seidman JG, Seidman C (2002) Transcription factor haploinsufficiency: when half a loaf is not enough. J Clin Invest 109:451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Papp B, Pal C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197

    Article  CAS  PubMed  Google Scholar 

  22. Kondrashov FA, Koonin EV (2004) A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplications. Trends Genet 20:287–290

    Article  CAS  PubMed  Google Scholar 

  23. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  CAS  PubMed  Google Scholar 

  24. Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci U S A 99:13606–13611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci U S A 99:13302–13306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pearl SA, Bowers JE, Reyes-Chin-Wo S, Michelmore RW, Burke JM (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267

    Google Scholar 

  27. Liu J, Cong B, Tanksley SD (2003) Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantitative trait locus fw2.2 controls fruit size. Plant Physiol 132:292–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  CAS  PubMed  Google Scholar 

  29. Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y (2002) The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci U S A 99:13627–13632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bowers JE, Chapman BA, Rong J, Paterson AH (2003) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  31. Chapman BA, Bowers JE, Feltus FA, Paterson AH (2006) Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. Proc Natl Acad Sci U S A 103:2730–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Freeling M, Thomas BC (2006) Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Res 16:805–814

    Article  CAS  PubMed  Google Scholar 

  33. Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y (2005) Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci U S A 102:5454–5459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16:934–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Freeling M, Lyons E, Pedersen B, Alam M, Ming R, Lisch D (2008) Many or most genes in Arabidopsis transposed after the origin of the order Brassicales. Genome Res 18:1924–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  PubMed  Google Scholar 

  38. Tasdighian S, Van Bel M, Li Z, Van de Peer Y, Carretero-Paulet L, Maere S (2017) Reciprocally retained genes in the angiosperm lineage show the hallmarks of dosage balance sensitivity. Plant Cell 29:2766–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huettel B, Kreil DP, Matzke M, Matzke AJM (2008) Effects of aneuploidy on genome structure, expression and interphase organization in Arabidopsis thaliana. PLoS Genet 4:e1000226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hou J, Shi X, Chen C, Islam MS, Johnson AF, Kanno T, Huettel B, Yen M-R, Ji T, Chen P-Y, Matzke M, Matzke AJM, Cheng J, Birchler JA (2018) Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. Proc Natl Acad Sci U S A 115:E11321–E11330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steinitz-Sears LM (1963) Chromosome studies in Arabidopsis thaliana. Genetics 48:483–490

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Miller M, Zhang C, Chen ZJ (2012) Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3 Genes Genomes Genet 2:505–513

    CAS  Google Scholar 

  43. Tsukaya H (2013) Does ploidy level directly control cell size? Counterevidence from Arabidopsis genetics. PLoS One 8:e83729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L (2010) Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 186:1231–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Casanova-Saez R, Candela H, Micol JL (2014) Combined haploinsufficiency and purifying selection drive retention of RPL36a paralogs in Arabidopsis. Sci Rep 4:4122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lo K-L, Wang L-C, Chen I-J, Liu Y-C, Chung M-C, Lo W-S (2014) Transcriptional consequence and impaired gametogenesis with high-grade aneuploidy in Arabidopsis thaliana. PLoS One 9:e114617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    CAS  PubMed  Google Scholar 

  48. McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgment

Research supported by the National Science Foundation Grant IOS-1545780 Plant Genome (JB, JC), NSF 1615789 (TJ), and NSF 1853556 (TJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler .

Editor information

Editors and Affiliations

Software Implementation

Software Implementation

Source code for ratio distribution and scatter plots is available through GitHub (https://github.com/chrischen1/Ratio-Distribution-Analysis-Demo).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shi, X. et al. (2020). The Gene Balance Hypothesis: Epigenetics and Dosage Effects in Plants. In: Spillane, C., McKeown, P. (eds) Plant Epigenetics and Epigenomics . Methods in Molecular Biology, vol 2093. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0179-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0179-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0178-5

  • Online ISBN: 978-1-0716-0179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics