Skip to main content

MSTD for Detecting Topological Domains from 3D Genomic Maps

  • Protocol
  • First Online:
Stem Cell Transcriptional Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2117))

  • 1797 Accesses

Abstract

In this chapter, we introduce a generic and efficient method to identify multiscale topological domains (MSTD), including cis- and trans-interacting regions, from a variety of 3D genomic datasets. We first applied MSTD to detect promoter-anchored interaction domains (PADs) from promoter capture Hi-C datasets across 17 primary blood cell types. The boundaries of PADs are significantly enriched with one or the combination of multiple epigenetic factors. Moreover, PADs between functionally similar cell types are significantly conserved in terms of domain regions and expression states. Cell type-specific PADs involve in distinct cell type-specific activities and regulatory events by dynamic interactions within them. We also employed MSTD to define multiscale domains from typical symmetric Hi-C datasets and illustrated its distinct superiority to the state-of-the-art methods in terms of accuracy, flexibility and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bickmore WA, van Steensel B (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152(6):1270–1284

    Article  CAS  PubMed  Google Scholar 

  2. Sexton T, Cavalli G (2015) The role of chromosome domains in shaping the functional genome. Cell 160(6):1049–1059

    Article  CAS  PubMed  Google Scholar 

  3. Pombo A, Dillon N (2015) Three-dimensional genome architecture: players and mechanisms. Nat Rev Mol Cell Biol 16(4):245–257

    Article  CAS  PubMed  Google Scholar 

  4. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159(7):1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42(1):53–61

    Article  CAS  PubMed  Google Scholar 

  6. Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A, Cavalli G (2011) Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 144(2):214–226

    Article  CAS  PubMed  Google Scholar 

  7. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485(7398):376–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, Piolot T, van Berkum NL, Meisig J, Sedat J (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485(7398):381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, Ong C-T, Hookway TA, Guo C, Sun Y (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153(6):1281–1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dali R, Blanchette M (2017) A critical assessment of topologically associating domain prediction tools. Nucleic Acids Res 45(6):2994–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Norton HK, Emerson DJ, Huang H, Kim J, Titus KR, Gu S, Bassett DS, Phillips-Cremins JE (2018) Detecting hierarchical genome folding with network modularity. Nat Methods 15(2):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malik L, Patro R (2018) Rich chromatin structure prediction from Hi-C data. IEEE/ACM Trans Comput Biol Bioinform 16(5):1448–1458

    Article  PubMed  Google Scholar 

  13. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Filippova D, Patro R, Duggal G, Kingsford C (2014) Identification of alternative topological domains in chromatin. Algorithm Mol Biol 9(1):14

    Article  Google Scholar 

  15. Weinreb C, Raphael BJ (2016) Identification of hierarchical chromatin domains. Bioinformatics 32(11):1601–1609

    Article  CAS  PubMed  Google Scholar 

  16. Zhan Y, Mariani L, Barozzi I, Schulz EG, Bluthgen N, Stadler M, Tiana G, Giorgetti L (2017) Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res 27(3):479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fraser J, Rousseau M, Shenker S, Ferraiuolo MA, Hayashizaki Y, Blanchette M, Dostie J (2009) Chromatin conformation signatures of cellular differentiation. Genome Biol 10(4):R37

    Article  PubMed  PubMed Central  Google Scholar 

  18. Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, Cairns J, Wingett SW, Várnai C, Thiecke MJ (2016) Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167(5):1369–1384. e1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Wong C-H, Birnbaum RY, Li G, Favaro R, Ngan CY, Lim J, Tai E, Poh HM, Wong E (2013) Chromatin connectivity maps reveal dynamic promoter–enhancer long-range associations. Nature 504(7479):306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eisenberg E, Levanon EY (2013) Human housekeeping genes, revisited. Trends Genet 29(10):569–574

    Article  CAS  PubMed  Google Scholar 

  21. Fraser J, Ferrai C, Chiariello AM, Schueler M, Rito T, Laudanno G, Barbieri M, Moore BL, Kraemer DC, Aitken S (2015) Hierarchical folding and reorganization of chromosomes are linked to transcriptional changes in cellular differentiation. Mol Syst Biol 11(12):852

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 43(11):1059

    Article  CAS  PubMed  Google Scholar 

  23. Rodriguez A, Laio A (2014) Clustering by fast search and find of density peaks. Science 344(6191):1492–1496

    Article  CAS  PubMed  Google Scholar 

  24. Sutherland H, Bickmore WA (2009) Transcription factories: gene expression in unions? Nat Rev Genet 10(7):457

    Article  CAS  PubMed  Google Scholar 

  25. Consortium GO (2015) Gene ontology consortium: going forward. Nucleic Acids Res 43(D1):D1049–D1056

    Article  Google Scholar 

  26. Polager S, Ginsberg D (2009) p53 and E2f: partners in life and death. Nat Rev Cancer 9(10):738–748

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Yusen Ye would like to thank the support of the Academy of Mathematics and Systems Science at CAS during his visit there. This work has been supported by the National Natural Science Foundation of China [No. 61873198, 61532014, 61432010, 61672407 to LG; 11661141019, 61621003, the Key Research Program of the Chinese Academy of Sciences [No. KFZD-SW-219], National Key Research and Development Program of China (2017YFC0908405) and CAS Frontier Science Research Key Project for Top Young Scientist [No. QYZDB-SSW-SYS008].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Gao or Shihua Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ye, Y., Gao, L., Zhang, S. (2020). MSTD for Detecting Topological Domains from 3D Genomic Maps. In: Kidder, B. (eds) Stem Cell Transcriptional Networks. Methods in Molecular Biology, vol 2117. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0301-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0301-7_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0300-0

  • Online ISBN: 978-1-0716-0301-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics