Skip to main content

Next-Generation Sequencing for Diagnosis of Viruses

  • Protocol
  • First Online:
Characterization of Plant Viruses

Abstract

Next-generation sequencing (NGS) is an unbiased approach to plant viral disease diagnosis that requires no prior knowledge of the host or the pathogen. The method involves extraction of total DNA or RNA or small RNA from the infected plant, the production of cDNA and, finally, sequencing, which produce sequences from a large range of potential pathogens. Analysis of the sequence data, development of contigs, and blasting contigs sequence against plant virus database aids in the identification of potential viruses. The results of the NGS can then be verified by designing virus-specific primers (based on the sequence of the contigs that hit viruses) and subjecting them to RT-PCR using total RNA from the infected plant, cloning and sequencing of the RT-PCR product by Sanger sequencing method. Once verified, more routine assays based on nucleic acid such as RT-PCR, real-time RT-PCR, loop-mediated isothermal amplification and recombinase polymerase amplification can be developed for quick and reliable detection of the virus in plants. The sequence data analysis is mainly based on bioinformatics software that can distinguish between host plant and viral sequences, and provides new opportunities in the areas of virus diagnosis and viral ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams I, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M, Samuitiene M, Boonham N (2009) Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol Plant Pathol 10:537–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams P, Miano DW, Kinyua ZM, Wangai A, Kimani E, Phiri N, Reeder R, Harju V, Glover R, Hany U, Souza-Richards R, Nath PD, Nixon T, Fox A, Barnes A, Smith J, Skelton A, Thwaites R, Mumford R, Boonham N (2012) Use of next generation sequencing for the identification and characterization of Maize chlorotic mottle virus and Sugarcane mosaic virus causing lethal necrosis in Kenya. Plant Pathol 62:741–749

    Article  Google Scholar 

  • AI Rwahnih M, Daubert S, Golino D, Rowhani A (2009) Deep sequencing analysis of RNAs from a grapevine showing Syrah decline symptoms reveals a multiple virus infection that includes a novel virus. Virology 387:395–401

    Article  Google Scholar 

  • AI Rwahnih M, Daubert S, U’rbez-Torres JR, Cordero F, Rowhani A (2011) Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. Arch Virol 156:397–403

    Article  Google Scholar 

  • AI Rwahnih M, Dav A, Anderson M, Uyemoto JK, Sudarshana MR (2012) Association of a circular DNA virus in grapevine affected by red blotch disease in California. In: Proceedings of the 17th Congress of ICVG, Davis, CA, USA, 7–14 October 2012

    Google Scholar 

  • Coetzee B, Freeborough MJ, Maree HJ, Celton JM, Rees DJ, Burger JT (2010) Deep sequencing analysis of viruses infecting grapevines: virome of a vineyard. Virology 400:157–163

    Article  CAS  PubMed  Google Scholar 

  • Egan AN, Schlueter J, Spooner DM (2012) Applications of next-generation sequencing in plant biology. Am J Bot 99(2):175–185

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Xu N, Li Z, Zhang S, Wu J, Kim DH, Sano Marma M, Meng Q, Cao H, Li X (2008) Four-color DNA sequencing with 30-O-modifiednucleotide reversible terminators and chemically cleavable fluorescent dideoxy nucleotides. Proc Natl Acad Sci U S A 105:9145–9150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hany U, Adams IP, Glover R, Bhat AI, Boonham N (2014) The complete genome sequence of Piper yellow mottle virus (PYMoV). Arch Virol 159:385–388

    Article  CAS  PubMed  Google Scholar 

  • Kreuze JF, Perez A, Untiveros M, Quispe D, Fuentes S, Barker I, Simon R (2009) Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1–7

    Article  CAS  PubMed  Google Scholar 

  • Loconsole G, Saldarelli P, Doddapaneni H, Savino V, Martelli GP, Saponari M (2012) Identification of a single-stranded DNA virus associated with citrus chlorotic dwarf disease, a new member of the family Geminiviridae. Virology 432:162–172

    Article  CAS  PubMed  Google Scholar 

  • Massart S, Candresse T, Gil J, Lacomme C, Predajna L, Ravnikar M (2017) A framework for the evaluation of biosecurity, commercial, regulatory, and scientific impacts of plant viruses and viroids identified by NGS technologies. Front Microbiol 8:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Monger WA, Alicai T, Ndunguru J, Kinyua ZM, Potts M, Reeder RH, Miano DW, Adams IP, Boonham N, Glover RH et al (2010) The complete genome sequence of the Tanzanian strain of Cassava brown streak virus and comparison with the Ugandan strain sequence. Arch Virol 155:429–433

    Article  CAS  PubMed  Google Scholar 

  • Pallett DW, Ho T, Cooper I, Wang H (2010) Detection of Cereal yellow dwarf virus using small interfering RNAs and enhanced infection rate with Cocksfoot streak virus in wild cocksfoot grass (Dactylis glomerata). J Virol Methods 168:223–227

    Article  CAS  PubMed  Google Scholar 

  • Nyren P (2007) The history of pyrosequencing. Methods Mol Biol 373:1–14

    CAS  PubMed  Google Scholar 

  • Pecman A, Kutnjak D, Gutiérrez-Aguirre I, Adams I, Fox A, Boonham N, Ravnikar M (2017) Next generation sequencing for detection and discovery of plant viruses and viroids: comparison of two approaches. Front Microbiol 8:1998

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy S, Coldren C, Karunamurthy A, Kip NS, Klee EW, Lincoln SE, Leon A, Pullambhatla M, Temple-Smolkin RL, Voelkerding KV, Wang C, Carter AB (2018) Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: a joint recommendation of the Association for Molecular Pathology and the College of American Pathologists. J Mol Diagn 20(1):4–27

    Article  CAS  PubMed  Google Scholar 

  • Quan P, Briese T, Palacios G, Lipkin WI (2008) Rapid sequence-based diagnosis of viral infection. Antivir Res 79:1–5

    Article  CAS  PubMed  Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352

    Article  CAS  PubMed  Google Scholar 

  • Rott M, Xiang Y, Boyes I, Belton M, Saeed H, Kesanakurti P (2017) Application of next generation sequencing for diagnostic testing of treefruit viruses and viroids. Plant Dis 101:1489–1499

    Article  CAS  PubMed  Google Scholar 

  • Silva TF, Romanel EAC, Andrade RRS, Farinelli L, Osteras M, Deluen C, Correa RL, Schrago CEG, Vaslin MFS (2011) Profile of small interfering RNAs from cotton plants infected with the polerovirus, Cotton leafroll dwarf virus. BMC Mol Biol 12:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vives MC, Velazquez K, Pina JA, Moreno P, Guerri J, Navarro L (2013) Identification of a new enamovirus associated with citrus vein enation disease by deep sequencing of small RNAs. Phytopathology 103:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Withers S, Gongora-Castillo E, Gent D, Thomas A, Ojiambo PS, Quesada-Ocampo LM (2016) Using next-generation sequencing to develop molecular diagnostics for Pseudoperonospora cubensis, the cucurbit downy mildew pathogen. Phytopathology 106:1105–1116

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Zhang H, Adams M, Yang J, Peng J, Antoniw J, Zhou Y, Chen J (2010) Characterization of siRNAs derived from Rice stripe virus in infected rice plants by deep sequencing. Arch Virol 155:935–940

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Singh K, Kaur R, Qiu W (2011) Association of a novel DNA virus with the grapevine vein-clearing and decline syndrome. Phytopathology 101:1081–1090

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bhat, A.I., Rao, G.P. (2020). Next-Generation Sequencing for Diagnosis of Viruses. In: Characterization of Plant Viruses . Springer Protocols Handbooks. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0334-5_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0334-5_41

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0333-8

  • Online ISBN: 978-1-0716-0334-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics