Skip to main content

Recording In-Cell NMR-Spectra in Living Mammalian Cells

  • Protocol
  • First Online:
Intrinsically Disordered Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2141))

Abstract

At the foundation of many cellular processes as well as a large number of diseases is the (mis)folding of important intrinsically disordered proteins (IDPs). Despite tremendous scientific efforts, the factors driving their structural changes within the cellular context remain poorly understood. In-cell NMR spectroscopy enables investigation of IDPs directly in the living eukaryotic cell enabling investigation of its intermolecular interactions and ensuing modifications at an unprecedented atomic resolution. In the following protocol, we describe how to prepare in-cell NMR samples of IDPs within eukaryotic cells and how to measure these in-cell NMR samples of an IDP in its natural environment, the living mammalian cell. Furthermore, we outline a procedure to assess the intracellular recombinant protein concentration of the studied IDP based on in-cell NMR methods. We use α-synuclein as a model protein, but the presented approach is highly modular and therefore should be easily adapted and altered to the desired needs for the studies of different IDPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babu MM, van der Lee R, de Groot NS, Gsponer J (2011) Intrinsically disordered proteins: regulation and disease. Curr Opin Struct Biol 21(3):432–440. https://doi.org/10.1016/j.sbi.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  2. Snead D, Eliezer D (2019) Intrinsically disordered proteins in synaptic vesicle trafficking and release. J Biol Chem 294(10):3325–3342. https://doi.org/10.1074/jbc.REV118.006493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kadavath H, Jaremko M, Jaremko L, Biernat J, Mandelkow E, Zweckstetter M (2015) Folding of the Tau protein on microtubules. Angew Chem Int Ed Engl 54(35):10347–10351. https://doi.org/10.1002/anie.201501714

    Article  CAS  PubMed  Google Scholar 

  4. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN (2008) The unfoldomics decade: an update on intrinsically disordered proteins. BMC Genomics 9(Suppl 2):S1. https://doi.org/10.1186/1471-2164-9-S2-S1

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dunker AK, Silman I, Uversky VN, Sussman JL (2008) Function and structure of inherently disordered proteins. Curr Opin Struct Biol 18(6):756–764. https://doi.org/10.1016/j.sbi.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  6. Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys 37:215–246. https://doi.org/10.1146/annurev.biophys.37.032807.125924

    Article  CAS  PubMed  Google Scholar 

  7. Wright PE, Dyson HJ (2015) Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol 16(1):18–29. https://doi.org/10.1038/nrm3920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gsponer J, Futschik ME, Teichmann SA, Babu MM (2008) Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322(5906):1365–1368. https://doi.org/10.1126/science.1163581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goedert M, Spillantini MG, Del Tredici K, Braak H (2013) 100 Years of Lewy pathology. Nat Rev Neurol 9(1):13–24. https://doi.org/10.1038/nrneurol.2012.242

    Article  CAS  PubMed  Google Scholar 

  10. Lashuel HA, Overk CR, Oueslati A, Masliah E (2013) The many faces of α-Synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48. https://doi.org/10.1038/nrn3406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Selenko P, Serber Z, Gadea B, Ruderman J, Wagner G (2006) Quantitative NMR analysis of the protein GB1 domain in Xenopus laevis egg extracts and intact oocytes. Proc Natl Acad Sci U S A 103(32):11904–11909. https://doi.org/10.1073/pnas.0604667103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Serber Z, Selenko P, Hansel R, Reckel S, Löhr F, Ferrell JE Jr, Wagner G, Dötsch V (2006) Investigating macromolecules inside cultured and injected cells by in-cell NMR spectroscopy. Nat Protoc 1(6):2701–2709. https://doi.org/10.1038/nprot.2006.181

    Article  CAS  PubMed  Google Scholar 

  13. Barbieri L, Luchinat E, Banci L (2016) Characterization of proteins by in-cell NMR spectroscopy in cultured mammalian cells. Nat Protoc 11(6):1101–1111. https://doi.org/10.1038/nprot.2016.061

    Article  CAS  PubMed  Google Scholar 

  14. Theillet FX, Binolfi A, Bekei B, Martorana A, Rose HM, Stuiver M, Verzini S, Lorenz D, van Rossum M, Goldfarb D, Selenko P (2016) Structural disorder of monomeric α-Synuclein persists in mammalian cells. Nature 530(7588):45–50. https://doi.org/10.1038/nature16531

    Article  CAS  PubMed  Google Scholar 

  15. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  16. Kang L, Moriarty GM, Woods LA, Ashcroft AE, Radford SE, Baum J (2012) N-terminal acetylation of α-synuclein induces increased transient helical propensity and decreased aggregation rates in the intrinsically disordered monomer. Protein Sci 21(7):911–917. https://doi.org/10.1002/pro.2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang C, Ren G, Zhou H, C-c W (2005) A new method for purification of recombinant human α-Synuclein in Escherichia coli. Protein Express Purif 42(1):173–177. https://doi.org/10.1016/j.pep.2005.02.014

    Article  CAS  Google Scholar 

  18. Anthis NJ, Clore GM (2013) Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci 22(6):851–858. https://doi.org/10.1002/pro.2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schanda P, Kupče E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33(4):199–211. https://doi.org/10.1007/s10858-005-4425-x

    Article  CAS  PubMed  Google Scholar 

  20. Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55(4):311–321. https://doi.org/10.1007/s10858-013-9715-0

    Article  CAS  PubMed  Google Scholar 

  21. Bermel W, Bertini I, Duma L, Felli IC, Emsley L, Pierattelli R, Vasos PR (2005) Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew Chem Int Ed Engl 44(20):3089–3092. https://doi.org/10.1002/anie.200461794

    Article  CAS  PubMed  Google Scholar 

  22. Gil S, Hosek T, Solyom Z, Kümmerle R, Brutscher B, Pierattelli R, Felli IC (2013) NMR spectroscopic studies of intrinsically disordered proteins at near-physiological conditions. Angew Chem Int Ed Engl 52(45):11808–11812. https://doi.org/10.1002/anie.201304272

    Article  CAS  PubMed  Google Scholar 

  23. Drexler HG, Uphoff CC (2002) Mycoplasma contamination of cell cultures: Incidence, sources, effects, detection, elimination, prevention. Cytotechnology 39(2):75–90. https://doi.org/10.1023/A:1022913015916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nikfarjam L, Farzaneh P (2012) Prevention and detection of Mycoplasma contamination in cell culture. Cell J 13(4):203–212

    PubMed  Google Scholar 

Download references

Acknowledgments

B.M.B. gratefully acknowledges funding from the Swedish Research Council and the Knut och Alice Wallenberg Foundation through a Wallenberg Academy Fellowship as well as through the Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Sweden. The Swedish NMR Centre of the University of Gothenburg is acknowledged for spectrometer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn M. Burmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Matečko-Burmann, I., Burmann, B.M. (2020). Recording In-Cell NMR-Spectra in Living Mammalian Cells. In: Kragelund, B.B., Skriver, K. (eds) Intrinsically Disordered Proteins. Methods in Molecular Biology, vol 2141. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0524-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0524-0_44

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0523-3

  • Online ISBN: 978-1-0716-0524-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics