Skip to main content

Identification of the KRIT1 Protein by LexA-Based Yeast Two-Hybrid System

  • Protocol
  • First Online:
Cerebral Cavernous Malformations (CCM)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2152))

  • 1144 Accesses

Abstract

Cerebral cavernous malformation (CCM) is a vascular malformation of the central nervous system that is associated with leaky capillaries, and a predisposition to serious clinical conditions including intracerebral hemorrhage and seizures. Germline or sporadic mutations in the CCM1/KRIT1 gene are responsible for the majority of cases of CCM. In this article, we describe the original characterization of the CCM1/KRIT1 gene. This cloning was done through the use of a variant of the yeast two-hybrid screen known as the interaction trap, using the RAS-family GTPase KREV1/RAP1A as a bait. The partial clone of KRIT1 (Krev1 Interaction Trapped) initially identified was extended through 5′RACE and computational analysis to obtain a full-length cDNA, then used in a sequential screen to define the integrin-associated ICAP1 protein as a KRIT1 partner protein. We discuss how these interactions are relevant to the current understanding of KRIT1/CCM1 biology, and provide a protocol for library screening with the Interaction Trap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacigaluppi S, Retta SF, Pileggi S et al (2013) Genetic and cellular basis of cerebral cavernous malformations: implications for clinical management. Clin Genet 83:7–14

    Article  CAS  PubMed  Google Scholar 

  2. Labauge P, Denier C, Bergametti F et al (2007) Genetics of cavernous angiomas. Lancet Neurol 6:237–244

    Article  CAS  PubMed  Google Scholar 

  3. Craig HD, Gunel M, Cepeda O et al (1998) Multilocus linkage identifies two new loci for a mendelian form of stroke, cerebral cavernous malformation, at 7p15-13 and 3q25.2-27. Hum Mol Genet 7:1851–1858

    Article  CAS  PubMed  Google Scholar 

  4. Denier C, Labauge P, Brunereau L et al (2004) Clinical features of cerebral cavernous malformations patients with KRIT1 mutations. Ann Neurol 55:213–220

    Article  CAS  PubMed  Google Scholar 

  5. Serebriiskii I, Estojak J, Sonoda G et al (1997) Association of Krev-1/rap1a with Krit1, a novel ankyrin repeat-containing protein encoded by a gene mapping to 7q21-22. Oncogene 15:1043–1049

    Article  CAS  PubMed  Google Scholar 

  6. Kitayama H, Sugimoto Y, Matsuzaki T et al (1989) A ras-related gene with transformation suppressor activity. Cell 56:77–84

    Article  CAS  PubMed  Google Scholar 

  7. Nassar N, Horn G, Herrmann C et al (1995) The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375:554–560

    Article  CAS  PubMed  Google Scholar 

  8. Herrmann C, Horn G, Spaargaren M et al (1996) Differential interaction of the Ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J Biol Chem 271:6794–6800

    Article  CAS  PubMed  Google Scholar 

  9. Buss JE, Quilliam LA, Kato K et al (1991) The COOH-terminal domain of the Rap1A (Krev-1) protein is isoprenylated and supports transformation by an H-Ras:Rap1A chimeric protein. Mol Cell Biol 11:1523–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jelinek MA, Hassell JA (1992) Reversion of middle T antigen-transformed Rat-2 cells by Krev-1: implications for the role of p21c-ras in polyomavirus-mediated transformation. Oncogene 7:1687–1698

    CAS  PubMed  Google Scholar 

  11. Sato KY, Polakis PG, Haubruck H et al (1994) Analysis of the tumor suppressor activity of the K-rev-1 gene in human tumor cell lines. Cancer Res 54:552–559

    CAS  PubMed  Google Scholar 

  12. Quinn MT, Parkos CA, Walker L et al (1989) Association of a Ras-related protein with cytochrome b of human neutrophils. Nature 342:198–200

    Article  CAS  PubMed  Google Scholar 

  13. Bokoch GM (1995) Regulation of the phagocyte respiratory burst by small GTP-binding proteins. Trends Cell Biol 5:109–113

    Article  CAS  PubMed  Google Scholar 

  14. Eklund EA, Marshall M, Gibbs JB et al (1991) Resolution of a low molecular weight G protein in neutrophil cytosol required for NADPH oxidase activation and reconstitution by recombinant Krev-1 protein. J Biol Chem 266:13964–13970

    CAS  PubMed  Google Scholar 

  15. Irani K, Xia Y, Zweier JL et al (1997) Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science 275:1649–1652

    Article  CAS  PubMed  Google Scholar 

  16. Fashena SJ, Serebriiskii I, Golemis EA (2000) The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. Gene 250:1–14

    Article  CAS  PubMed  Google Scholar 

  17. Brent R, Ptashne M (1985) A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43:729–736

    Article  CAS  PubMed  Google Scholar 

  18. Ma J, Ptashne M (1988) Converting a eukaryotic transcriptional inhibitor into an activator. Cell 55:443–446

    Article  CAS  PubMed  Google Scholar 

  19. Fields S, Song O (1989) A novel genetic system to detect protein-protein interactions. Nature 340:245–246

    Article  CAS  PubMed  Google Scholar 

  20. Gyuris J, Golemis E, Chertkov H et al (1993) Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803

    Article  CAS  PubMed  Google Scholar 

  21. Estojak J, Brent R, Golemis EA (1995) Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 15:5820–5829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fashena SJ, Serebriiskii IG, Golemis EA (2000) LexA-based two-hybrid systems. Methods Enzymol 328:14–26

    Article  CAS  PubMed  Google Scholar 

  23. Golemis EA, Brent R (1992) Fused protein domains inhibit DNA binding by LexA. Mol Cell Biol 12:3006–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Golemis EA, Serebriiskii I, Finley RL Jr et al (2011) Interaction trap/two-hybrid system to identify interacting proteins. Curr Protoc Cell Biol. Chapter 17:Unit 17 13

    Google Scholar 

  25. Golemis EA, Serebriiskii I, Law SF (1999) The yeast two-hybrid system: criteria for detecting physiologically significant protein-protein interactions. Curr Issues Mol Biol 1:31–45

    CAS  PubMed  Google Scholar 

  26. Khazak V, Estojak J, Cho H et al (1998) Analysis of the interaction of the novel RNA polymerase II (pol II) subunit hsRPB4 with its partner hsRPB7 and with pol II. Mol Cell Biol 18:1935–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khazak V, Golemis EA, Weber L (2005) Development of a yeast two-hybrid screen for selection of human Ras-Raf protein interaction inhibitors. Methods Mol Biol 310:253–271

    Article  CAS  PubMed  Google Scholar 

  28. Serebriiskii I, Estojak J, Berman M et al (2000) Approaches to detecting false positives in yeast two-hybrid systems. BioTechniques 28(328–330):332–326

    Google Scholar 

  29. Serebriiskii I, Khazak V, Golemis EA (1999) A two-hybrid dual bait system to discriminate specificity of protein interactions. J Biol Chem 274:17080–17087

    Article  CAS  PubMed  Google Scholar 

  30. Serebriiskii IG, Mitina O, Pugacheva EN et al (2002) Detection of peptides, proteins, and drugs that selectively interact with protein targets. Genome Res 12:1785–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Toby GG, Golemis EA (2001) Using the yeast interaction trap and other two-hybrid-based approaches to study protein-protein interactions. Methods 24:201–217

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, Lindblom T, Chang A et al (2000) Evidence that dim1 associates with proteins involved in pre-mRNA splicing, and delineation of residues essential for dim1 interactions with hnRNP F and Npw38/PQBP-1. Gene 257:33–43

    Article  CAS  PubMed  Google Scholar 

  33. Finley RL Jr, Brent R (1994) Interaction mating reveals binary and ternary connections between Drosophila cell cycle regulators. Proc Natl Acad Sci U S A 91:12980–12984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eerola I, Plate KH, Spiegel R et al (2000) KRIT1 is mutated in hyperkeratotic cutaneous capillary-venous malformation associated with cerebral capillary malformation. Hum Mol Genet 9:1351–1355

    Article  CAS  PubMed  Google Scholar 

  35. Laberge-Le Couteulx S, Jung HH, Labauge P et al (1999) Truncating mutations in CCM1, encoding KRIT1, cause hereditary cavernous angiomas. Nat Genet 23:189–193

    Article  CAS  PubMed  Google Scholar 

  36. Sahoo T, Johnson EW, Thomas JW et al (1999) Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). Hum Mol Genet 8:2325–2333

    Article  CAS  PubMed  Google Scholar 

  37. Zhang J, Clatterbuck RE, Rigamonti D et al (2000) Mutations in KRIT1 in familial cerebral cavernous malformations. Neurosurgery 46:1272–1277. discussion 1277-1279

    Article  CAS  PubMed  Google Scholar 

  38. Eerola I, Mcintyre B, Vikkula M (2001) Identification of eight novel 5′-exons in cerebral capillary malformation gene-1 (CCM1) encoding KRIT1. Biochim Biophys Acta 1517:464–467

    Article  CAS  PubMed  Google Scholar 

  39. Sahoo T, Goenaga-Diaz E, Serebriiskii IG et al (2001) Computational and experimental analyses reveal previously undetected coding exons of the KRIT1 (CCM1) gene. Genomics 71:123–126

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Clatterbuck RE, Rigamonti D et al (2000) Cloning of the murine Krit1 cDNA reveals novel mammalian 5′ coding exons. Genomics 70:392–395

    Article  CAS  PubMed  Google Scholar 

  41. Liu W, Draheim KM, Zhang R et al (2013) Mechanism for KRIT1 release of ICAP1-mediated suppression of integrin activation. Mol Cell 49:719–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zawistowski JS, Serebriiskii IG, Lee MF et al (2002) KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. Hum Mol Genet 11:389–396

    Article  CAS  PubMed  Google Scholar 

  43. Chang DD, Wong C, Smith H et al (1997) ICAP-1, a novel beta1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of beta1 integrin. J Cell Biol 138:1149–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang J, Clatterbuck RE, Rigamonti D et al (2001) Interaction between krit1 and icap1alpha infers perturbation of integrin beta1-mediated angiogenesis in the pathogenesis of cerebral cavernous malformation. Hum Mol Genet 10:2953–2960

    Article  CAS  PubMed  Google Scholar 

  45. Zawistowski JS, Stalheim L, Uhlik MT et al (2005) CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. Hum Mol Genet 14:2521–2531

    Article  CAS  PubMed  Google Scholar 

  46. Uhlik MT, Abell AN, Johnson NL et al (2003) Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock. Nat Cell Biol 5:1104–1110

    Article  CAS  PubMed  Google Scholar 

  47. Borikova AL, Dibble CF, Sciaky N et al (2010) Rho kinase inhibition rescues the endothelial cell cerebral cavernous malformation phenotype. J Biol Chem 285:11760–11764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kleaveland B, Zheng X, Liu JJ et al (2009) Regulation of cardiovascular development and integrity by the heart of glass-cerebral cavernous malformation protein pathway. Nat Med 15:169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng X, Riant F, Bergametti F et al (2014) Cerebral cavernous malformations arise independent of the heart of glass receptor. Stroke 45:1505–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gunel M, Laurans MS, Shin D et al (2002) KRIT1, a gene mutated in cerebral cavernous malformation, encodes a microtubule-associated protein. Proc Natl Acad Sci U S A 99:10677–10682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Beraud-Dufour S, Gautier R, Albiges-Rizo C et al (2007) Krit 1 interactions with microtubules and membranes are regulated by Rap1 and integrin cytoplasmic domain associated protein-1. FEBS J 274:5518–5532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu JJ, Stockton RA, Gingras AR et al (2011) A mechanism of Rap1-induced stabilization of endothelial cell–cell junctions. Mol Biol Cell 22:2509–2519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Whitehead KJ, Chan AC, Navankasattusas S et al (2009) The cerebral cavernous malformation signaling pathway promotes vascular integrity via Rho GTPases. Nat Med 15:177–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Maddaluno L, Rudini N, Cuttano R et al (2013) EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature 498:492–496

    Article  CAS  PubMed  Google Scholar 

  55. Cuttano R, Rudini N, Bravi L et al (2016) KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 8:6–24

    Article  CAS  PubMed  Google Scholar 

  56. Goitre L, De Luca E, Braggion S et al (2014) KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun. Free Radic Biol Med 68:134–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Goitre L, Distefano PV, Moglia A et al (2017) Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium. Sci Rep 7:8296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Antognelli C, Trapani E, Delle Monache S et al (2018) KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease. Free Radic Biol Med 115:202–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Duttweiler HM (1996) A highly sensitive and non-lethal beta-galactosidase plate assay for yeast. Trends Genet 12:340–341

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ilya G. Serebriiskii or Erica A. Golemis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Serebriiskii, I.G., Elmekawy, M., Golemis, E.A. (2020). Identification of the KRIT1 Protein by LexA-Based Yeast Two-Hybrid System. In: Trabalzini, L., Finetti, F., Retta, S. (eds) Cerebral Cavernous Malformations (CCM) . Methods in Molecular Biology, vol 2152. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0640-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0640-7_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0639-1

  • Online ISBN: 978-1-0716-0640-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics