Skip to main content

Detection of DNA Double-Strand Breaks by γ-H2AX Immunodetection

  • Protocol
  • First Online:
Homologous Recombination

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2153))

Abstract

DNA double-strand breaks (DSBs) are the most deleterious type of DNA damage and a cause of genetic instability as they can lead to mutations, genome rearrangements, or loss of genetic material when not properly repaired. Eukaryotes from budding yeast to mammalian cells respond to the formation of DSBs with the immediate phosphorylation of a histone H2A isoform. The modified histone, phosphorylated in serine 139 in mammals (S129 in yeast), is named γ-H2AX. Detection of DSBs is of high relevance in research on DNA repair, aging, tumorigenesis, and cancer drug development, given the tight association of DSBs with different diseases and its potential to kill cells. DSB levels can be obtained by measuring levels of γ-H2AX in extracts of cell populations or by counting foci in individual nuclei. In this chapter some techniques to detect γ-H2AX are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-strand breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273(10):5858–5868

    Article  CAS  Google Scholar 

  2. Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916

    Article  CAS  Google Scholar 

  3. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10(15):886–895

    Article  CAS  Google Scholar 

  4. Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408(6815):1001–1004

    Article  CAS  Google Scholar 

  5. Figueroa-González G, Pérez-Plasencia C (2017) Strategies for the evaluation of DNA damage and repair mechanisms in cancer. Oncol Lett 13(6):3982–3988. https://doi.org/10.3892/ol.2017.6002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123(1):291–298

    Article  CAS  Google Scholar 

  7. Anderson D, Dhawan A, Laubenthal J (2013) The comet assay in human biomonitoring. Methods Mol Biol 1044:347–362. https://doi.org/10.1007/978-1-62703-529-3_18

    Article  CAS  PubMed  Google Scholar 

  8. Kumari S, Rastogi R, Singh K, Singh S, Sinha R (2008) DNA damage: detection strategies. EXCLI J 7:44–62

    Google Scholar 

  9. Hu J, Meyers RM, Dong J, Panchakshari RA, Alt FW, Frock RL (2016) Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat Protoc 11(5):853–871. https://doi.org/10.1038/nprot.2016.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Levsky JM, Singer RH (2003) Fluorescence in situ hybridization: past, present and future. J Cell Sci 116(Pt 14):2833–2838

    Article  CAS  Google Scholar 

  11. Jones JM, Gellert M, Yang W (2001) A Ku bridge over broken DNA. Structure 9(10):881–884

    Article  CAS  Google Scholar 

  12. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Sollier S, Pommier Y (2008) Gamma H2AX and cancer. Nat Rev Cancer 8:957–967

    Article  CAS  Google Scholar 

  13. Domínguez-Sánchez M, Barroso S, Gómez-González B, Luna R, Aguilera A (2011) Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLoS Genet 7(12):e1002386. https://doi.org/10.1371/journal.pgen.1002386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhatia V, Barroso SI, García-Rubio ML, Tumini E, Herrera-Moyano E, Aguilera A (2014) BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2. Nature 511(7509):362–365. https://doi.org/10.1038/nature13374

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

AA’s lab is funded by the Spanish Ministry of Economy and Competitiveness, Junta de Andalucía, European Research Council, and the European Union (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Aguilera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Barroso, S.I., Aguilera, A. (2021). Detection of DNA Double-Strand Breaks by γ-H2AX Immunodetection. In: Aguilera, A., Carreira, A. (eds) Homologous Recombination. Methods in Molecular Biology, vol 2153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0644-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0644-5_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0643-8

  • Online ISBN: 978-1-0716-0644-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics