Skip to main content

A Lipidomic Approach to Identify Cold-Induced Changes in Arabidopsis Membrane Lipid Composition

  • Protocol
  • First Online:
Plant Cold Acclimation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2156))

Abstract

Lipid changes that occur in leaves of plants (e.g., Arabidopsis thaliana), during cold and freezing stress can be analyzed with electrospray ionization triple quadrupole mass spectrometry, using high-throughput multiple reaction monitoring (MRM). An online tool, LipidomeDB Data Calculation Environment, is employed for mass spectral data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  2. Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  3. Uemura M, Joseph RA, Steponkus PL (1995) Cold acclimation of Arabidopsis thaliana (effect on plasma membrane lipid composition and freeze-induced lesions). Plant Physiol 109:15–30

    Article  CAS  Google Scholar 

  4. Gilmour SJ, Hajela RK, Thomashow MF (1988) Cold acclimation in Arabidopsis thaliana. Plant Physiol 87:745–750

    Article  CAS  Google Scholar 

  5. Miquel M, James D, Dooner H et al (1993) Arabidopsis requires polyunsaturated lipids for low-temperature survival. Proc Natl Acad Sci U S A 90:6208–6212

    Article  CAS  Google Scholar 

  6. Hugly S, Somerville C (1992) A role for membrane lipid polyunsaturation in chloroplast biogenesis at low temperature. Plant Physiol 99:197–202

    Article  CAS  Google Scholar 

  7. Welti R, Li W, Li M et al (2002) Profiling membrane lipids in plant stress responses. Role of phospholipase Dα in freezing-induced lipid changes in Arabidopsis. J Biol Chem 277:31994–32002

    Article  CAS  Google Scholar 

  8. Li W, Wang R, Li M et al (2008) Differential degradation of extraplastidic and plastidic lipids during freezing and post-freezing recovery in Arabidopsis thaliana. J Biol Chem 283:461–468

    Article  CAS  Google Scholar 

  9. Degenkolbe T, Giavalisco P, Zuther E et al (2012) Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Plant J 72:972–982

    Article  CAS  Google Scholar 

  10. Li Q, Zheng Q, Shen W et al (2015) Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants. Plant Cell 27:86–103

    Article  Google Scholar 

  11. Barnes AC, Benning C, Roston RL (2016) Chloroplast membrane remodeling during freezing stress is accompanied by cytoplasmic acidification activating SENSITIVE TO FREEZING2. Plant Physiol 171:2140–2149

    Article  CAS  Google Scholar 

  12. Vu HS, Roth MR, Tamura P et al (2014) Head-group acylation of monogalactosyldiacylglycerol is a common stress response, and the acyl-galactose acyl composition varies with the plant species and applied stress. Physiol Plant 150:517–528

    Article  CAS  Google Scholar 

  13. Chen QF, Xiao S, Chye ML (2008) Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol 148:304–315

    Article  CAS  Google Scholar 

  14. Arisz SA, Heo JY, Koevoets IT et al (2018) DIACYLGLYCEROL ACYLTRANSFERASE1 contributes to freezing tolerance. Plant Physiol 177:1410–1424

    Article  CAS  Google Scholar 

  15. Moellering ER, Muthan B, Benning C (2010) Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane. Science 330:226–228

    Article  CAS  Google Scholar 

  16. Taki N, Sasaki-Sekimoto Y, Obayashiet T et al (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol 139:1268–1283

    Article  CAS  Google Scholar 

  17. Sharma M, Laxmi A (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci 6:1129

    PubMed  PubMed Central  Google Scholar 

  18. Hu Y, Jiang L, Wang F et al (2013) Jasmonate regulates the inducer of CBF expression–c-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25:2907–2924

    Article  CAS  Google Scholar 

  19. Burgos A, Szymanski J, Seiwert B et al (2011) Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. Plant J 66:656–668

    Article  CAS  Google Scholar 

  20. Vu HS, Tamura P, Galeva NA et al (2012) Direct infusion mass spectrometry of oxylipin-containing Arabidopsis membrane lipids reveals varied patterns in different stress responses. Plant Physiol 158:324–339

    Article  CAS  Google Scholar 

  21. Vu HS, Shiva S, Hall AS et al (2014) A lipidomic approach to identify cold-induced changes in Arabidopsis membrane lipid composition. In: Hincha DK, Zuther EZ (eds) Plant cold acclimation, Methods in molecular biology, vol 1166. Humana, New York, pp 199–215

    Chapter  Google Scholar 

  22. Shiva S, Vu HS, Roth MR et al (2013) Lipidomic analysis of plant membrane lipids by direct infusion tandem mass spectrometry. In: Munnik T, Heilmann I (eds) Plant lipid signaling protocols, Methods in molecular biology, vol 1009. Humana, Totowa, NJ, pp 79–91

    Chapter  Google Scholar 

  23. Shiva S, Enninful R, Roth MR et al (2018) An efficient modified method for plant leaf lipid extraction results in improved recovery of phosphatidic acid. Plant Methods 14:14

    Article  Google Scholar 

  24. Vu HS, Shiva S, Roth MR et al (2014) Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis. Plant J 80:728–743

    Article  CAS  Google Scholar 

  25. Fruehan C, Johnson D, Welti R (2018) LipidomeDB Data Calculation Environment has been updated to process direct-infusion multiple reaction monitoring data. Lipids 53:1019–1020

    Article  CAS  Google Scholar 

  26. Dunn WB, Broadhurst D, Begley P et al (2011) Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc 6:1060–1083

    Article  CAS  Google Scholar 

  27. Ames BN (1966) Assay of inorganic phosphate, total phosphate and phosphatases. In: Neufeld E, Ginsburg V (eds) Complex carbohydrates, Methods in enzymology, vol 8. Academic, New York, pp 115–118

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank lab member Libin Yao for her contributions to plant stress experiments in our laboratory, Mark Ungerer for use of his lab’s freezing chamber, and Ari Jumpponen for use of his lab’s light cart. This work was supported by the USDA National Institute of Food and Agriculture, Hatch/Multi-State project 1013013, and National Science Foundation MCB 1413036. Instrument acquisition at KLRC was supported by National Science Foundation (EPS 0236913, DBI 0521587, DBI 1228622, DBI 1726527), K-IDeA Networks of Biomedical Research Excellence (INBRE) of National Institute of Health (P20GM103418), and Kansas State University. Contribution no. 20-008-B from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Welti .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Supplemental Table 1

Song_et_al_Supplemental tables 1 to 4 (XLSX 74 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Song, Y. et al. (2020). A Lipidomic Approach to Identify Cold-Induced Changes in Arabidopsis Membrane Lipid Composition. In: Hincha, D., Zuther, E. (eds) Plant Cold Acclimation. Methods in Molecular Biology, vol 2156. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0660-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0660-5_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0659-9

  • Online ISBN: 978-1-0716-0660-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics