Skip to main content

Design and Evaluation of Guide RNA Transcripts with a 3′-Terminal HDV Ribozyme to Enhance CRISPR-Based Gene Inactivation

  • Protocol
  • First Online:
Ribozymes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2167))

Abstract

The recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)-Cpf1 system, now reclassified as Cas12a, is a DNA-editing platform analogous to the widely used CRISPR-Cas9 system. The Cas12a system exhibits several distinct features over the CRISPR-Cas9 system, such as increased specificity and a smaller gene size to encode the nuclease and the matching CRISPR guide RNA (crRNA), which could mitigate off-target and delivery problems, respectively, described for the Cas9 system. However, the Cas12a system exhibits reduced gene editing efficiency compared to Cas9. A closer inspection of the crRNA sequence raised some uncertainty about the actual 5′ and 3′-ends. RNA Polymerase (Pol) III promoters are generally used for the production of small RNAs with a precise 5′ terminus, but the Pol III enzyme generates small RNAs with 3’ U-tails of variable length. To optimize the CRISPR-Cas12a system, we describe the inclusion of a self-cleaving ribozyme in the vector design to facilitate accurate 3′-end processing of the crRNA transcript to produce precise molecules. This optimized design enhanced not only the gene editing efficiency, but also the activity of the catalytically inactive Cas12a-based CRISPR gene activation platform. We thus generated an improved CRISPR-Cas12a system for more efficient gene editing and gene regulation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  Google Scholar 

  2. Marraffini LA (2015) CRISPR-Cas immunity in prokaryotes. Nature 526:55–61

    Article  CAS  Google Scholar 

  3. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE et al (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  4. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  Google Scholar 

  5. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188

    Article  CAS  Google Scholar 

  6. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M et al (2014) Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol 32:551

    Article  CAS  Google Scholar 

  7. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P et al (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771

    Article  CAS  Google Scholar 

  8. Fagerlund RD, Staals RH, Fineran PC (2015) The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol 16:251

    Article  Google Scholar 

  9. Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W et al (2017) Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol 15:169–182

    Article  CAS  Google Scholar 

  10. Port F, Bullock SL (2016) Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs. Nat Methods 13:852

    Article  CAS  Google Scholar 

  11. Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM et al (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34:869

    Article  CAS  Google Scholar 

  12. Kim D, Kim J, Hur JK, Been KW, S-h Y, Kim J-S (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34:863

    Article  CAS  Google Scholar 

  13. Fonfara I, Richter H, Bratovič M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532:517

    Article  CAS  Google Scholar 

  14. Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM et al (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35:31

    Article  CAS  Google Scholar 

  15. Gao Z, Herrera-Carrillo E, Berkhout B (2018) Delineation of the exact transcription termination signal for type 3 polymerase III. Mol Ther Nucl Acids 10:36–44

    Article  CAS  Google Scholar 

  16. Gao Z, Herrera-Carrillo E, Berkhout B (2018) Improvement of the CRISPR-Cpf1 system with ribozyme-processed crRNA. RNA Biol 15:1458–1467

    Article  Google Scholar 

  17. Kleibeuker W, Zhou X, Centlivre M, Legrand N, Page M, Almond N et al (2009) A sensitive cell-based assay to measure the doxycycline concentration in biological samples. Hum Gene Ther 20:524–530

    Article  CAS  Google Scholar 

  18. Baron U, Schnappinger D, Helbl V, Gossen M, Hillen W, Bujard H (1999) Generation of conditional mutants in higher eukaryotes by switching between the expression of two genes. Proc Natl Acad Sci U S A 96:1013–1018

    Article  CAS  Google Scholar 

  19. Gossen M, Freundlieb S, Bender G, Müller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    Article  CAS  Google Scholar 

  20. Kleibeuker W, Zhou X, Centlivre M, Legrand N, Page M, Almond N et al (2009) A sensitive cell-based assay to measure the doxycycline concentration in biological samples. Hum Gene Ther 20:524–530

    Article  CAS  Google Scholar 

  21. Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34:863–868

    Article  CAS  Google Scholar 

  22. Moreno-Mateos MA, Fernandez JP, Rouet R, Vejnar CE, Lane MA, Mis E et al (2017) CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing. Nat Commun 8:2024

    Article  Google Scholar 

  23. Cong L, Ran FA, Cox D, Lin SL, Barretto R, Habib N et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  24. Ruijter JM, Thygesen HH, Schoneveld OJ, Das AT, Berkhout B, Lamers WH (2006) Factor correction as a tool to eliminate between-session variation in replicate experiments: application to molecular biology and retrovirology. Retrovirology 3:1–8

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health (NIH) under award number 1R01AI145045-01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ben Berkhout or Elena Herrera-Carrillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Berkhout, B., Gao, Z., Herrera-Carrillo, E. (2021). Design and Evaluation of Guide RNA Transcripts with a 3′-Terminal HDV Ribozyme to Enhance CRISPR-Based Gene Inactivation. In: Scarborough, R.J., Gatignol, A. (eds) Ribozymes. Methods in Molecular Biology, vol 2167. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0716-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0716-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0715-2

  • Online ISBN: 978-1-0716-0716-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics