Skip to main content

ALU A-to-I RNA Editing: Millions of Sites and Many Open Questions

  • Protocol
  • First Online:
RNA Editing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2181))

Abstract

Alu elements are repetitive short interspersed elements prevalentĀ in the primate genome. These repeats account for over 10% of the genome with more than a million highly similar copies. A direct outcome of this is an enrichment in long structures of stable dsRNA, which are the target of adenosine deaminases acting on RNAs (ADARs), the enzymes catalyzing A-to-I RNA editing. Indeed, A-to-I editing by ADARs is extremely abundant in primates: over a hundred million editing sites exist in their genomes. However, despite the radical increase in ADAR targets brought on by the introduction of Alu elements, the few evolutionary conserved editing sites manage to retain their editing levels. Here, we review and discuss the cost of having an unusual amount of dsRNA and editing in the transcriptome, as well as the opportunities it presents, which possibly contributed to accelerating primate evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li JB, Church GM (2013) Deciphering the functions and regulation of brain-enriched A-to-I RNA editing. Nat Neurosci 16:1518ā€“1522

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  2. Savva YA, Rieder LE, Reenan RA (2012) The ADAR protein family. Genome Biol 13:252

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Nishikura K (2010) Functions and regulation of RNA editing by ADAR Deaminases. Annu Rev Biochem 79:321ā€“349

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Chen CX, Cho DS, Wang Q et al (2000) A third member of the RNA-specific adenosine deaminase gene family, ADAR3, contains both single- and double-stranded RNA binding domains. RNA (New York, NY) 6:755ā€“767

    CASĀ  Google ScholarĀ 

  5. Oakes E, Anderson A, Cohen-Gadol A et al (2017) Adenosine deaminase that acts on RNA 3 (ADAR3) binding to glutamate receptor subunit B pre-mRNA inhibits RNA editing in glioblastoma. J Biol Chem 292:4326ā€“4335

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  6. Bass BL (2002) RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem 71:817ā€“846

    CASĀ  PubMedĀ  Google ScholarĀ 

  7. Ramaswami G, Zhang R, Piskol R et al (2013) Identifying RNA editing sites using RNA sequencing data alone. Nat Methods 10:128ā€“132

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. St Laurent G, Tackett MR, Nechkin S et al (2013) Genome-wide analysis of A-to-I RNA editing by single-molecule sequencing in Drosophila. Nat Struct Mol Biol 20:1333ā€“1339

    CASĀ  PubMedĀ  Google ScholarĀ 

  9. Pinto Y, Cohen HY, Levanon EY (2014) Mammalian conserved ADAR targets comprise only a small fragment of the human editosome. Genome Biol 15:R5

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Li JB, Levanon EY, Yoon J-K et al (2009) Genome-wide identification of human RNA editing sites by parallel DNA capturing and sequencing. Science 324:1210ā€“1213

    CASĀ  PubMedĀ  Google ScholarĀ 

  11. Hoopengardner B (2003) Nervous system targets of RNA editing identified by comparative genomics. Science 301:832ā€“836

    CASĀ  PubMedĀ  Google ScholarĀ 

  12. Yang W, Chendrimada TP, Wang Q et al (2005) Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat Struct Mol Biol 13:13ā€“21

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Kawahara Y, Zinshteyn B, Sethupathy P et al (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315:1137ā€“1140

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  14. Paul D, Sinha AN, Ray A et al (2017) A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Sci Rep 7:2466

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  15. Pinto Y, Buchumenski I, Levanon EY et al (2018) Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Res 46:71ā€“82

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. Blow M, Grocock R, van Dongen S et al (2006) RNA editing of human microRNAs. Genome Biol 7:R27

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Alon S, Mor E, Vigneault F et al (2012) Systematic identification of edited microRNAs in the human brain. Genome Res 22:1533ā€“1540

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Warnefors M, Liechti A, Halbert J et al (2014) Conserved microRNA editing in mammalian evolution, development and disease. Genome Biol 15:R83

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  19. Wahlstedt H, Daniel C, Ensterƶ M et al (2009) Large-scale mRNA sequencing determines global regulation of RNA editing during brain development. Genome Res 19(6):978ā€“986. https://doi.org/10.1101/gr.089409.108

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  20. Greenberger S, Levanon EY, Paz-Yaacov N et al (2010) Consistent levels of A-to-I RNA editing across individuals in coding sequences and non-conserved Alu repeats. BMC Genomics 11:608

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Slotkin W, Nishikura K (2013) Adenosine-to-inosine RNA editing and human disease. Genome Med 5:105

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Gallo A, Locatelli F (2011) ADARs: allies or enemies? The importance of A-to-I RNA editing in human disease: from cancer to HIV-1. Biol Rev 87:95ā€“110

    PubMedĀ  Google ScholarĀ 

  23. Levanon EY (2005) Evolutionarily conserved human targets of adenosine to inosine RNA editing. Nucleic Acids Res 33:1162ā€“1168

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  24. Ohlson J, Pedersen JS, Haussler D et al (2007) Editing modifies the GABAA receptor subunit 3. RNA 13:698ā€“703

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  25. Eisenberg E, Levanon EY (2018) A-to-I RNA editingā€”immune protector and transcriptome diversifier. Nat Rev Genet 19:473ā€“490

    CASĀ  PubMedĀ  Google ScholarĀ 

  26. Athanasiadis A, Rich A, Maas S (2004) Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol 2:e391

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  27. Kim DDY, Kim TTY, Walsh T et al (2004) Widespread RNA editing of embedded Alu elements in the human transcriptome. Genome Res 14:1719ā€“1725

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Levanon EY, Eisenberg E, Yelin R et al (2004) Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol 22:1001ā€“1005

    CASĀ  PubMedĀ  Google ScholarĀ 

  29. Blow M (2004) A survey of RNA editing in human brain. Genome Res 14:2379ā€“2387

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  30. Bazak L, Haviv A, Barak M et al (2013) A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res 24:365ā€“376

    PubMedĀ  Google ScholarĀ 

  31. Ullu E and Tschudi C Alu sequences are processed 7SL RNA genes. Nature 312:171ā€“2

    Google ScholarĀ 

  32. Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370ā€“379

    CASĀ  PubMedĀ  Google ScholarĀ 

  33. Neeman Y, Levanon EY, Jantsch MF, et al (2006) RNA editing level in the mouse is determined by the genomic repeat repertoire. RNA (New York, NY) 12:1802ā€“9

    Google ScholarĀ 

  34. Eisenberg E, Li JB, Levanon EY (2010) Sequence based identification of RNA editing sites. RNA Biol 7:248ā€“252

    CASĀ  PubMedĀ  Google ScholarĀ 

  35. Lin W, Piskol R, Tan MH et al (2012) Comment on ā€œwidespread RNA and DNA sequence differences in the human transcriptomeā€. Science 335:1302ā€“1302

    CASĀ  PubMedĀ  Google ScholarĀ 

  36. Pickrell JK, Gilad Y, Pritchard JK (2012) Comment on ā€œwidespread RNA and DNA sequence differences in the human transcriptomeā€. Science (New York, NY) 335:1302; author reply 1302

    CASĀ  Google ScholarĀ 

  37. Kleinman CL, Majewski J (2012) Comment on ā€œwidespread RNA and DNA sequence differences in the human transcriptomeā€. Science 335:1302; author reply 1302

    CASĀ  PubMedĀ  Google ScholarĀ 

  38. Bahn JH, Lee J-H, Li G et al (2011) Accurate identification of A-to-I RNA editing in human by transcriptome sequencing. Genome Res 22:142ā€“150

    PubMedĀ  Google ScholarĀ 

  39. Park E, Williams B, Wold BJ et al (2012) RNA editing in the human ENCODE RNA-seq data. Genome Res 22:1626ā€“1633

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  40. Peng Z, Cheng Y, Tan BC-M et al (2012) Comprehensive analysis of RNA-Seq data reveals extensive RNA editing in a human transcriptome. Nat Biotechnol 30:253ā€“260

    CASĀ  PubMedĀ  Google ScholarĀ 

  41. Ramaswami G, Lin W, Piskol R et al (2012) Accurate identification of human Alu and non-Alu RNA editing sites. Nat Methods 9:579ā€“581

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  42. Porath HT, Carmi S, Levanon EY (2014) A genome-wide map of hyper-edited RNA reveals numerous new sites. Nat Commun 5:4726

    CASĀ  PubMedĀ  Google ScholarĀ 

  43. Cattenoz PB, Taft RJ, Westhof E et al (2012) Transcriptome-wide identification of A > I RNA editing sites by inosine specific cleavage. RNA 19:257ā€“270

    PubMedĀ  Google ScholarĀ 

  44. Sakurai M, Ueda H, Yano T et al (2014) A biochemical landscape of A-to-I RNA editing in the human brain transcriptome. Genome Res 24:522ā€“534

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Ramaswami G and Li JB (2013) RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic acids research gkt996

    Google ScholarĀ 

  46. Djebali S, Davis CA, Merkel A et al (2012) Landscape of transcription in human cells. Nature 489:101ā€“108

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  47. Hishiki T, Kawamoto S, Morishita S et al (2000) BodyMap: a human and mouse gene expression database. Nucleic Acids Res 28:136ā€“138

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Nishikura K (2006) Editor meets silencer: crosstalk between RNA editing and RNA interference. Nat Rev Mol Cell Biol 7:919ā€“931

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. George CX, John L, Samuel CE (2014) An RNA editor, adenosine deaminase acting on double-stranded RNA (ADAR1). J Interf Cytokine Res 34:437ā€“446

    CASĀ  Google ScholarĀ 

  50. Saunders LR, Barber GN (2003) The dsRNA binding protein family: critical roles, diverse cellular functions. FASEB J 17:961ā€“983

    CASĀ  PubMedĀ  Google ScholarĀ 

  51. Barak M, Porath HT, Finkelstein G et al (2020) Purifying selection of long dsRNA is the first line of defense against false activation of innate immunity. Genome Biology 21:26

    Google ScholarĀ 

  52. Neeman Y, Dahary D, Levanon EY et al (2005) Is there any sense in antisense editing? Trends Genet 21(10):544ā€“547

    Google ScholarĀ 

  53. Bass BL, Weintraub H (1987) A developmentally regulated activity that unwinds RNA duplexes. Cell 48:607ā€“613

    CASĀ  PubMedĀ  Google ScholarĀ 

  54. Bass BL, Weintraub H (1988) An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 55:1089ā€“1098

    CASĀ  PubMedĀ  Google ScholarĀ 

  55. Eisenberg E, Nemzer S, Kinar Y et al (2005) Is abundant A-to-I RNA editing primate-specific? Trends Genet 21:77ā€“81

    CASĀ  PubMedĀ  Google ScholarĀ 

  56. Wang IX, So E, Devlin JL et al (2013) ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep 5:849ā€“860

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Melcher T, Maas S, Herb A et al (1996) A mammalian RNA editing enzyme. Nature 379:460ā€“464

    CASĀ  PubMedĀ  Google ScholarĀ 

  58. Riedmann EM, Schopoff S, Hartner JC et al (2008) Specificity of ADAR-mediated RNA editing in newly identified targets. RNA 14:1110ā€“1118

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  59. Kwak S, Nishimoto Y, Yamashita T (2008) Newly identified ADAR-mediated A-to-I editing positions as a tool for ALS research. RNA Biol 5:193ā€“197

    CASĀ  PubMedĀ  Google ScholarĀ 

  60. Burns CM, Chu H, Rueter SM et al (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387:303ā€“308

    CASĀ  PubMedĀ  Google ScholarĀ 

  61. Nishimoto Y, Yamashita T, Hideyama T et al (2008) Determination of editors at the novel A-to-I editing positions. Neurosci Res 61:201ā€“206

    CASĀ  PubMedĀ  Google ScholarĀ 

  62. Bazak L, Levanon EY, Eisenberg E (2014) Genome-wide analysis of Alu editability. Nucleic Acids Res 42:6876ā€“6884

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  63. Bhalla T, Rosenthal JJC, Holmgren M et al (2004) Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat Struct Mol Biol 11:950ā€“956

    CASĀ  PubMedĀ  Google ScholarĀ 

  64. Garncarz W, Tariq A, Handl C et al (2013) A high-throughput screen to identify enhancers of ADAR-mediated RNA-editing. RNA Biol 10:192ā€“204

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Freund EC, Sapiro AL, Li Q et al (2019) Unbiased identification of trans regulators of ADAR and A-to-I RNA editing. bioRxiv:631200

    Google ScholarĀ 

  66. Quinones-Valdez G, Tran SS, Jun H-I et al (2019) Regulation of RNA editing by RNA-binding proteins in human cells. Comm Biol 2:19

    Google ScholarĀ 

  67. Roth SH, Levanon EY, Eisenberg E. (2019) Genome-wide quantification of ADAR adenosine-to-inosine RNA editing activity. Nat Methods 16:1131ā€“1138

    Google ScholarĀ 

  68. Schaffer AA, Kopel E, Hendel A et al (2020) The cell line A-to-I RNA editing catalogue. Nucleic Acids Res https://doi.org/10.1093/nar/gkaa305

  69. Hulme AE, Bogerd HP, Cullen BR et al (2007) Selective inhibition of Alu retrotransposition by APOBEC3G. Gene 390:199

    CASĀ  PubMedĀ  Google ScholarĀ 

  70. Koito A, Ikeda T (2013) Intrinsic immunity against retrotransposons by APOBEC cytidine deaminases. Front Microbiol 4:28

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  71. Cordaux R, Hedges DJ, Herke SW et al (2006) Estimating the retrotransposition rate of human Alu elements. Gene 373:134ā€“137

    CASĀ  PubMedĀ  Google ScholarĀ 

  72. Smalheiser NR, Torvik VI (2006) Alu elements within human mRNAs are probable microRNA targets. Trends Genet 22:532ā€“536

    CASĀ  PubMedĀ  Google ScholarĀ 

  73. Liang H, Landweber LF (2007) Hypothesis: RNA editing of microRNA target sites in humans? RNA (New York, NY) 13:463ā€“467

    CASĀ  Google ScholarĀ 

  74. Hoffman Y, Dahary D, Bublik DR et al (2013) The majority of endogenous microRNA targets within Alu elements avoid the microRNA machinery. Bioinformatics 29:894ā€“902

    CASĀ  PubMedĀ  Google ScholarĀ 

  75. Zhang Z, Carmichael GG (2001) The fate of dsRNA in the nucleus: a p54(nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106:465ā€“475

    CASĀ  PubMedĀ  Google ScholarĀ 

  76. Scadden ADJ, Smith CW (2001) Specific cleavage of hyper-edited dsRNAs. EMBO J 20:4243ā€“4252

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Savva YA, JEC J, Chang Y-J et al (2013) RNA editing regulates transposon-mediated heterochromatic gene silencing. Nat Commun 4:2745

    PubMedĀ  Google ScholarĀ 

  78. Schmitz J, Brosius J (2011) Exonization of transposed elements: a challenge and opportunity for evolution. Biochimie 93:1928ā€“1934

    CASĀ  PubMedĀ  Google ScholarĀ 

  79. Lev-Maor G (2003) The birth of an alternatively spliced exon: 3ā€² splice-site selection in Alu exons. Science 300:1288ā€“1291

    CASĀ  PubMedĀ  Google ScholarĀ 

  80. Sela N, Mersch B, Gal-Mark N et al (2007) Comparative analysis of transposed element insertion within human and mouse genomes reveals Aluā€™s unique role in shaping the human transcriptome. Genome Biol 8:R127

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. Lev-Maor G, Sorek R, Levanon EY et al (2007) RNA-editing-mediated exon evolution. Genome Biol 8:R29

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Daniel C, Silberberg G, Behm M et al (2014) Alu elements shape the primate transcriptome by cis-regulation of RNA editing. Genome Biol 15:R28

    PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  83. Barak M, Levanon EY, Eisenberg E et al (2009) Evidence for large diversity in the human transcriptome created by Alu RNA editing. Nucleic Acids Res 37:6905ā€“6915

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  84. Schmucker D, Clemens JC, Shu H et al (2000) Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101:671ā€“684

    CASĀ  PubMedĀ  Google ScholarĀ 

  85. Paz-Yaacov N, Levanon EY, Nevo E et al (2010) Adenosine-to-inosine RNA editing shapes transcriptome diversity in primates. Proc Natl Acad Sci U S A 107:12174ā€“12179

    CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  86. Mattick JS, Mehler MF (2008) RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci 31:227ā€“233

    CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

EYL was supported by the International Collaboration Grant from the Jacki and Bruce Barron Cancer Research Scholarsā€™ Program, a partnership of the Israel Cancer Research Fund and City of Hope, as supported by The Harvey L. Miller Family Foundation [grant number 205467].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erez Y. Levanon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schaffer, A.A., Levanon, E.Y. (2021). ALU A-to-I RNA Editing: Millions of Sites and Many Open Questions. In: Picardi, E., Pesole, G. (eds) RNA Editing. Methods in Molecular Biology, vol 2181. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0787-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0787-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0786-2

  • Online ISBN: 978-1-0716-0787-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics