Skip to main content

Building and Interpreting Artificial Neural Network Models for Biological Systems

  • Protocol
  • First Online:
Artificial Neural Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2190))

Abstract

Biology has become a data driven science largely due to the technological advances that have generated large volumes of data. To extract meaningful information from these data sets requires the use of sophisticated modeling approaches. Toward that, artificial neural network (ANN) based modeling is increasingly playing a very important role. The “black box” nature of ANNs acts as a barrier in providing biological interpretation of the model. Here, the basic steps toward building models for biological systems and interpreting them using calliper randomization approach to capture complex information are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weinberg R (2010) Point: hypotheses first. Nature 464:678

    Article  CAS  PubMed  Google Scholar 

  2. Golub T (2010) Counterpoint: data first. Nature 464:679

    Article  CAS  PubMed  Google Scholar 

  3. Groffen J, Stephenson JR, Heisterkamp N et al (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93–99

    Article  CAS  PubMed  Google Scholar 

  4. Nowell PC (1962) The minute chromosome (Phl) in chronic granulocytic leukemia. Blut 8:65–66

    Article  CAS  PubMed  Google Scholar 

  5. Nowell PC (2007) Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest 117:2033–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Salesse S, Verfaillie CM (2002) BCR/ABL: from molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia. Oncogene 21:8547–8559

    Article  CAS  PubMed  Google Scholar 

  7. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  8. Westfall PH (1997) Multiple testing of general contrasts using logical constraints and correlations. J Am Stat Assoc 92:299–306

    Article  Google Scholar 

  9. Nair TM (2012) Analysis of isoform expression from splicing array using multiple comparisons. Methods Mol Biol 802:113–121

    Article  CAS  PubMed  Google Scholar 

  10. Urbanowicz RJ, Meeker M, La Cava W et al (2018) Relief-based feature selection: introduction and review. J Biomed Inform 85:189–203

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liang S, Ma A, Yang S et al (2018) A review of matched-pairs feature selection methods for gene expression data analysis. Comput Struct Biotechnol J 16:88–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu H, Wong L (2003) Data mining tools for biological sequences. J Bioinforma Comput Biol 1:139–167

    Article  CAS  Google Scholar 

  13. Bergmeir C, Benítez JM (2012) Neural networks in R using the stuttgart neural network simulator: RSNNS. J Stat Softw 1(7)

    Google Scholar 

  14. Swets JA, Dawes RM, Monahan J (2000) Better decisions through science. Sci Am 283:82–87

    Article  CAS  PubMed  Google Scholar 

  15. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  16. Bewick V, Cheek L, Ball J (2004) Statistics review 13: receiver operating characteristic curves. Crit Care 8:508–512

    Article  PubMed  PubMed Central  Google Scholar 

  17. Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27:113–159

    Article  CAS  Google Scholar 

  18. Avery OT, Macleod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types : induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type iii. J Exp Med 79:137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nair TM, Tambe SS, Kulkarni BD (1994) Application of artificial neural networks for prokaryotic transcription terminator prediction. FEBS Lett 346:273–277

    Article  CAS  PubMed  Google Scholar 

  20. Nair TM (2018) Statistical and artificial neural network-based analysis to understand complexity and heterogeneity in preeclampsia. Comput Biol Chem 75:222–230

    Article  CAS  PubMed  Google Scholar 

  21. Nair TM (1997) Calliper randomization: an artificial neural network based analysis of E. coli ribosome binding sites. J Biomol Struct Dyn 15:611–617

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank IUSB for funding this work. This work is also supported partly by NSF award 1726218.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Murlidharan Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nair, T.M. (2021). Building and Interpreting Artificial Neural Network Models for Biological Systems. In: Cartwright, H. (eds) Artificial Neural Networks. Methods in Molecular Biology, vol 2190. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0826-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0826-5_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0825-8

  • Online ISBN: 978-1-0716-0826-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics