Skip to main content

Assessing Homologous Recombination and Interstrand Cross-Link Repair in Embryonal Carcinoma Testicular Germ Cell Tumor Cell Lines

  • Protocol
  • First Online:
Testicular Germ Cell Tumors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2195))

Abstract

Testicular germ cell tumors (TGCTs) are typically exquisitely sensitive to DNA interstrand cross-link (ICLs) agents. ICLs covalently link both strands of the DNA duplex, impeding fundamental cellular processes like DNA replication to cause cell death. A leading drug used for the treatment of TGCTs is cisplatin, which introduces ICLs and leads to formation of double strand breaks (DSBs), a DNA lesion that can be repaired in the S/G2 phases of the cell cycle by homologous recombination (HR, also termed homology-direct repair). Although most TGCTs respond to cisplatin-induced ICLs, a fraction is resistant to treatment. One proposed mechanism of TGCT resistance to cisplatin is an enhanced ability to repair DSBs by HR. Other than HR, repair of the ICL-lesions requires additional DNA repair mechanisms, whose action might also be implemented in therapy-resistant cells. This chapter describes GFP assays to measure (a) HR proficiency following formation of a DSB by the endonuclease I-SceI, and (b) HR repair induced by site-specific ICL formation involving psoralen. These experimental approaches can be used to determine the proficiency of TGCT cell lines in DSB repair by HR in comparison to HR repair of ICLs, providing tools to better characterize their recombination profile. Protocols of these assays have been adapted for use in Embryonal Carcinoma (EC) TGCT cell lines. Assays only require transient introduction of plasmids within cells, affording the advantage of testing multiple cell lines in a relatively short time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jostes S, Nettersheim D, Fellermeyer M et al (2017) The bromodomain inhibitor JQ1 triggers growth arrest and apoptosis in testicular germ cell tumours in vitro and in vivo. J Cell Mol Med 21(7):1300–1314

    Article  CAS  Google Scholar 

  2. Oosterhuis JW, Looijenga LH (2005) Testicular germ-cell tumours in a broader perspective. Nat Rev Cancer 5(3):210–222

    Article  CAS  Google Scholar 

  3. Bagrodia A, Lee BH, Lee W et al (2016) Genetic determinants of cisplatin resistance in patients with advanced germ cell tumors. J Clin Oncol 34(33):4000–4007

    Article  CAS  Google Scholar 

  4. Pont J, Holtl W, Kosak D et al (1990) Risk-adapted treatment choice in stage I nonseminomatous testicular germ cell cancer by regarding vascular invasion in the primary tumor: a prospective trial. J Clin Oncol 8(1):16–20

    Article  CAS  Google Scholar 

  5. Moul JW, McCarthy WF, Fernandez EB et al (1994) Percentage of embryonal carcinoma and of vascular invasion predicts pathological stage in clinical stage I nonseminomatous testicular cancer. Cancer Res 54(2):362–364

    CAS  PubMed  Google Scholar 

  6. Heidenreich A, Sesterhenn IA, Mostofi FK et al (1998) Prognostic risk factors that identify patients with clinical stage I nonseminomatous germ cell tumors at low risk and high risk for metastasis. Cancer 83(5):1002–1011

    Article  CAS  Google Scholar 

  7. Einhorn LH, Donohue J (1977) Cis-diamminedichloroplatinum, vinblastine, and bleomycin combination chemotherapy in disseminated testicular cancer. Ann Intern Med 87(3):293–298

    Article  CAS  Google Scholar 

  8. Ceccaldi R, Sarangi P, D’Andrea AD (2016) The Fanconi anaemia pathway: new players and new functions. Nat Rev Mol Cell Biol 17(6):337–349

    Article  CAS  Google Scholar 

  9. Pierce AJ, Hu P, Han M et al (2001) Ku DNA end-binding protein modulates homologous repair of double-strand breaks in mammalian cells. Genes Dev 15(24):3237–3242

    Article  CAS  Google Scholar 

  10. Cavallo F, Graziani G, Antinozzi C et al (2012) Reduced proficiency in homologous recombination underlies the high sensitivity of embryonal carcinoma testicular germ cell tumors to Cisplatin and poly (adp-ribose) polymerase inhibition. PLoS One 7(12):e51563

    Article  CAS  Google Scholar 

  11. Moynahan ME, Jasin M (2010) Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat Rev Mol Cell Biol 11(3):196–207

    Article  CAS  Google Scholar 

  12. Nakanishi K, Cavallo F, Perrouault L et al (2011) Homology-directed Fanconi anemia pathway cross-link repair is dependent on DNA replication. Nat Struct Mol Biol 18(4):500–503

    Article  CAS  Google Scholar 

  13. Nakanishi K, Cavallo F, Brunet E et al (2011) Homologous recombination assay for interstrand cross-link repair. Methods Mol Biol 745:283–291

    Article  CAS  Google Scholar 

  14. Richardson C, Moynahan ME, Jasin M (1998) Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev 12(24):3831–3842

    Article  CAS  Google Scholar 

  15. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  CAS  Google Scholar 

  16. Pierce AJ, Jasin M (2005) Measuring recombination proficiency in mouse embryonic stem cells. Methods Mol Biol 291:373–384

    CAS  PubMed  Google Scholar 

  17. Weinstock DM, Nakanishi K, Helgadottir HR et al (2006) Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase. Methods Enzymol 409:524–540

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by My First AIRC Grant (MFAG) n. 4765 (M.B.), Cooperlink grant n. CII11RLETZ (M.B.), PRIN 2010/2010M4NEFY_004 (M.B.) and R01CA185660 (M.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Barchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cavallo, F., Caggiano, C., Jasin, M., Barchi, M. (2021). Assessing Homologous Recombination and Interstrand Cross-Link Repair in Embryonal Carcinoma Testicular Germ Cell Tumor Cell Lines. In: Bagrodia, A., Amatruda, J.F. (eds) Testicular Germ Cell Tumors. Methods in Molecular Biology, vol 2195. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0860-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0860-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0859-3

  • Online ISBN: 978-1-0716-0860-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics