Skip to main content

Microfabricated Device for High-Resolution Imaging of Preimplantation Embryos

  • Protocol
  • First Online:
Epigenetic Reprogramming During Mouse Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2214))

  • 2083 Accesses

Abstract

The mouse preimplantation embryo is an excellent system for studying how mammalian cells organize dynamically into increasingly complex structures. Accessible to experimental and genetic manipulations, its normal or perturbed development can be scrutinized ex vivo by real-time imaging from fertilization to late blastocyst stage. High-resolution imaging of multiple embryos at the same time can be compromised by embryos displacement during imaging. We have developed an inexpensive and easy-to-produce imaging device that facilitates greatly the imaging of preimplantation embryo. In this chapter, we describe the different steps of production and storage of the imaging device as well as its use for live imaging of mouse preimplantation embryos expressing fluorescent reporters from genetically modified alleles or after in vitro transcribed mRNA transfer by microinjection or electroporation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallingford JB (2019) The 200-year effort to see the embryo. Science 365:758–759. https://doi.org/10.1126/science.aaw7565

    Article  PubMed  CAS  Google Scholar 

  2. Ries J (1909) Kinematographie der Befruchtung und Zellteilung. Arch Mikrosk Anat 74:1–31. https://doi.org/10.1007/BF02979930

    Article  Google Scholar 

  3. Landecker H (2009) Seeing things: from microcinematography to live cell imaging. Nat Methods 6:707–709. https://doi.org/10.1038/nmeth1009-707

    Article  PubMed  CAS  Google Scholar 

  4. Hammer RE (1998) Egg culture: the foundation. Int J Dev Biol 42:833–839

    PubMed  CAS  Google Scholar 

  5. Bedzhov I, Leung CY, Bialecka M, Zernicka-Goetz M (2014) In vitro culture of mouse blastocysts beyond the implantation stages. Nat Protoc 9:2732–2739. https://doi.org/10.1038/nprot.2014.186

    Article  PubMed  CAS  Google Scholar 

  6. McDole K, Guignard L, Amat F et al (2018) In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell 175:859–876.e33. https://doi.org/10.1016/j.cell.2018.09.031

    Article  PubMed  CAS  Google Scholar 

  7. Heape W (1997) Preliminary note on the transplantation and growth of mammalian ova within a uterine foster-mother. Proc R Soc Lond 48:457–458. https://doi.org/10.1098/rspl.1890.0053

    Article  Google Scholar 

  8. Lewis WH, Gregory PW (1929) Cinematographs of living developing rabbit-eggs. Science 69:226–229. https://doi.org/10.1126/science.69.1782.226-a

    Article  PubMed  CAS  Google Scholar 

  9. Nowotschin S, Eakin GS, Hadjantonakis A-KK (2009) Live-imaging fluorescent proteins in mouse embryos: multi-dimensional, multi-spectral perspectives. Trends Biotechnol 27:266–276. https://doi.org/10.1016/j.tibtech.2009.02.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lambert TJ (2019) FPbase: a community-editable fluorescent protein database. Nat Methods 16:277–278. https://doi.org/10.1038/s41592-019-0352-8

    Article  PubMed  CAS  Google Scholar 

  11. Pantazis P, Supatto W (2014) Advances in whole-embryo imaging: a quantitative transition is underway. Nat Rev Mol Cell Biol 15:327–339. https://doi.org/10.1038/nrm3786

    Article  PubMed  CAS  Google Scholar 

  12. Louvet-Vallée S, Vinot S, Maro B (2005) Mitotic spindles and cleavage planes are oriented randomly in the two-cell mouse embryo. Curr Biol 15:464–469. https://doi.org/10.1016/j.cub.2004.12.078

    Article  PubMed  CAS  Google Scholar 

  13. Artus J, Kang M, Cohen-Tannoudji M, Hadjantonakis A-KK (2013) PDGF signaling is required for primitive endoderm cell survival in the inner cell mass of the mouse blastocyst. Stem Cells 31:1932–1941. https://doi.org/10.1002/stem.1442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Meilhac SM, Adams RJ, Morris SA et al (2009) Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Dev Biol 331:210–221. https://doi.org/10.1016/j.ydbio.2009.04.036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Morris SA, Teo RTY, Li H et al (2010) Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. Proc Natl Acad Sci U S A 107:6364–6369. https://doi.org/10.1073/pnas.0915063107

    Article  PubMed  PubMed Central  Google Scholar 

  16. Watanabe T, Biggins JS, Tannan NB, Srinivas S (2014) Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification. Development 141:2279–2288. https://doi.org/10.1242/dev.103267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Samarage CR, White MD, Alvarez YD et al (2015) Cortical tension allocates the first inner cells of the mammalian embryo. Dev Cell 34:435–447. https://doi.org/10.1016/j.devcel.2015.07.004

    Article  PubMed  CAS  Google Scholar 

  18. Korotkevich E, Niwayama R, Courtois A et al (2017) The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev Cell 40:235–247.e7. https://doi.org/10.1016/j.devcel.2017.01.006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Plusa B, Piliszek A, Frankenberg S et al (2008) Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:3081–3091. https://doi.org/10.1242/dev.021519

    Article  PubMed  CAS  Google Scholar 

  20. Xenopoulos P, Kang M, Puliafito A et al (2015) Heterogeneities in nanog expression drive stable commitment to pluripotency in the mouse blastocyst. Cell Rep 10:1508–1520. https://doi.org/10.1016/j.celrep.2015.02.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Plachta N, Bollenbach T, Pease S et al (2011) Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol 13:117–123. https://doi.org/10.1038/ncb2154

    Article  PubMed  CAS  Google Scholar 

  22. Fierro-González JC, White MD, Silva JC, Plachta N (2013) Cadherin-dependent filopodia control preimplantation embryo compaction. Nat Cell Biol 15:1424–1433. https://doi.org/10.1038/ncb2875

    Article  PubMed  CAS  Google Scholar 

  23. Maître J-L, Niwayama R, Turlier H et al (2015) Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat Cell Biol 17:849–855. https://doi.org/10.1038/ncb3185

    Article  PubMed  CAS  Google Scholar 

  24. Dumortier JG, Le Verge-Serandour M, Tortorelli A-F et al (2019) Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science 365:465–468. https://doi.org/10.1126/science.aaw7709

    Article  PubMed  CAS  Google Scholar 

  25. Zenker J, White MD, Gasnier M et al (2018) Expanding actin rings zipper the mouse embryo for blastocyst formation. Cell 173:776–791.e17. https://doi.org/10.1016/j.cell.2018.02.035

    Article  PubMed  CAS  Google Scholar 

  26. Gardner RL (2001) Specification of embryonic axes begins before cleavage in normal mouse development. Development 128:839–847

    PubMed  CAS  Google Scholar 

  27. Hiiragi T, Solter D (2004) First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei. Nature 430:360–364. https://doi.org/10.1038/nature02595

    Article  PubMed  CAS  Google Scholar 

  28. Alexandrova S, Kalkan T, Humphreys P et al (2016) Selection and dynamics of embryonic stem cell integration into early mouse embryos. Development 143:24–34. https://doi.org/10.1242/dev.124602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Strauss B, Harrison A, Coelho PA et al (2018) Cyclin B1 is essential for mitosis in mouse embryos, and its nuclear export sets the time for mitosis. J Cell Biol 217:179–193. https://doi.org/10.1083/jcb.201612147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ramade A, Legant WR, Picart C et al (2014) Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues. Methods Cell Biol 121:191–211. https://doi.org/10.1016/B978-0-12-800281-0.00013-0

    Article  PubMed  Google Scholar 

  31. Xia YN, Whitesides GM (1998) Soft Lithography. Angew Chem Int Ed Engl 37:550–575. https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G

    Article  PubMed  CAS  Google Scholar 

  32. Behringer R, Gertsenstein M, Nagy KV, Nagy A (2014) Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  33. Hadjantonakis A-KK, Papaioannou VE (2004) Dynamic in vivo imaging and cell tracking using a histone fluorescent protein fusion in mice. BMC Biotechnol 4:1–14. https://doi.org/10.1186/1472-6750-4-33

    Article  CAS  Google Scholar 

  34. Muzumdar MD, Tasic B, Miyamichi K et al (2007) A global double-fluorescent Cre reporter mouse. Genesis 45:593–605. https://doi.org/10.1002/dvg.20335

    Article  PubMed  CAS  Google Scholar 

  35. Festuccia N, Dubois A, Vandormael-Pournin S et al (2016) Mitotic binding of Esrrb marks key regulatory regions of the pluripotency network. Nat Cell Biol 18:1139–1148. https://doi.org/10.1038/ncb3418

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Institut Pasteur, the Centre National de la Recherche Scientifique and the Agence Nationale de la Recherche (ANR-10-LABX-73-01 REVIVE and ANR-14 CE11-0017 PrEpiSpec) for their support. The activity of the Biomaterials and Microfluidics core facility is partially funded by the Carnot MS program. We are grateful to all lab members for their help and in particular Gwendoline Tallec and Sylvain Bessonnard for their involvement in the design and validation of the initial version of the mouse Eggbox. We thank Jérôme Artus for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Cohen-Tannoudji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vandormael-Pournin, S., Frachon, E., Gobaa, S., Cohen-Tannoudji, M. (2021). Microfabricated Device for High-Resolution Imaging of Preimplantation Embryos. In: Ancelin, K., Borensztein, M. (eds) Epigenetic Reprogramming During Mouse Embryogenesis. Methods in Molecular Biology, vol 2214. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0958-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0958-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0957-6

  • Online ISBN: 978-1-0716-0958-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics