Skip to main content

Depletion and Maturation of Myeloid-Derived Suppressor Cells in Murine Cancer Models

  • Protocol
  • First Online:
Myeloid-Derived Suppressor Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2236))

Abstract

Myeloid-derived suppressor cells (MDSC) are known to inhibit functions of T and NK cells. MDSC have been shown to be generated and to accumulate under chronic inflammatory conditions that are typical for cancer. Therefore, it would be highly beneficial to find ways to diminish the number and immunosuppressive functions of these cells in tumor-bearing hosts. Here we describe current protocols to deplete MDSC or induce their maturation in preclinical tumor models that could lead to the attenuation of their immunosuppressive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gabrilovich DI (2017) Myeloid-derived suppressor cells. Cancer Immunol Res 5:3–8

    Article  CAS  Google Scholar 

  2. Medina E, Hartl D (2018) Myeloid-derived suppressor cells in infection: a general overview. J Innate Immun 255:210–221

    Google Scholar 

  3. Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150

    Article  CAS  Google Scholar 

  4. Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A et al (2008) Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell suppressive activity. Blood 111:4233–4244

    Article  CAS  Google Scholar 

  5. Zhou J, Nefedova Y, Lei A, Gabrilovich D (2018) Neutrophils and PMN-MDSC: their biological role and interaction with stromal cells. Semin Immunol 35:19–28

    Article  CAS  Google Scholar 

  6. Vincent J, Mignot G, Chalmin F, Ladoire S, Bruchard M, Chevriaux A et al (2010) 5-fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity. Cancer Res 70:3052–3061

    Article  CAS  Google Scholar 

  7. Draghiciu O, Nijman HW, Hoogeboom BN, Meijerhof T, Daemen T (2015) Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradication. Onco Targets Ther 4:e989

    Google Scholar 

  8. Sevko A, Michels T, Vrohlings M, Umansky L, Beckhove P, Kato M et al (2013) Antitumor effect of paclitaxel is mediated by inhibition of myeloid-derived suppressor cells and chronic inflammation in the spontaneous melanoma model. J Immunol 190:2464–2471

    Article  CAS  Google Scholar 

  9. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE (2008) Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 83:64–70

    Article  CAS  Google Scholar 

  10. Kuwata T, Wang IM, Tamura T, Ponnamperuma RM, Levine R, Holmes KL et al (2000) Vitamin a deficiency in mice causes a systemic expansion of myeloid cells. Blood 95:3349–3356

    Article  CAS  Google Scholar 

  11. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R et al (2003) All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 66:9299–9307

    Google Scholar 

  12. Nefedova Y, Fishman M, Sherman S, Wang X, Beg AA, Gabrilovich DI (2007) Mechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cells. Cancer Res 67:11021–11028

    Article  CAS  Google Scholar 

  13. Kusmartsev S, Gabrilovich DI (2003) Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186–196

    Article  CAS  Google Scholar 

  14. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM et al (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205:2235–2249

    Article  CAS  Google Scholar 

  15. Donyai P, Sewell GJ (2006) Physical and chemical stability of paclitaxel infusions in different container types. J Oncol Pharm Pract 12:211–222

    Article  CAS  Google Scholar 

  16. Geary SM, Lemke CD, Lubaroff DM, Salem AK (2013) The combination of a low-dose chemotherapeutic agent, 5-fluorouracil, and an adenoviral tumor vaccine has a synergistic benefit on survival in a tumor model system. PLoS One 8:e67904

    Article  CAS  Google Scholar 

  17. Srivastava MK, Zhu L, Harris-White M, Kar U, Huang M, Johnson MF et al (2012) Myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS One 7:e40677

    Article  CAS  Google Scholar 

  18. Hurez V, Daniel BJ, Sun L, Liu AJ, Ludwig SM, Kious MJ et al (2012) Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res 15:2089–2099

    Article  Google Scholar 

  19. Kumar V, Cheng P, Condamine T, Mony S, Languino LR, McCaffrey JC et al (2016) CD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiation. Immunity 44:303–315

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Umansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Groth, C., Weber, R., Utikal, J., Umansky, V. (2021). Depletion and Maturation of Myeloid-Derived Suppressor Cells in Murine Cancer Models. In: Brandau, S., Dorhoi, A. (eds) Myeloid-Derived Suppressor Cells. Methods in Molecular Biology, vol 2236. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1060-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1060-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1059-6

  • Online ISBN: 978-1-0716-1060-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics