Skip to main content

Conditioned Place Preference Test for Assessing the Rewarding Effects of Drugs of Abuse

  • Protocol
  • First Online:
The Brain Reward System

Part of the book series: Neuromethods ((NM,volume 165))

Abstract

The conditioned place preference (CPP) procedure is used for assessing the rewarding effects of drugs. This is demonstrated when a novel environment becomes associated with a drug’s effects, to the extent that an organism, when given the choice, will prefer to be in that environment. The procedure has been used across numerous drug classes and species. This chapter reviews the approaches to conducting CPP studies, including considerations on equipment setups, training procedures, data analyses, pharmacological manipulations, conditioned place aversion, and other features of place conditioning. The chapter serves as a primer for using this procedure for the study of drugs that produce rewarding or aversive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegal S et al (1982) Heroin “overdose” death: Contribution of drug-associated environmental cues. Science 216:436–437

    Article  Google Scholar 

  2. Carey AN et al (2007) Reinstatement of cocaine place-conditioning prevented by the peptide kappa-opioid receptor antagonist arodyn. Eur J Pharmacol 569:84–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. McLaughlin JP, Marton-Popovici M, Chavkin C (2003) κ opioid receptor antagonism and prodynorphin gene disruption block stress-induced behavioral responses. J Neurosci 23:5674–5683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shin EJ et al (2005) The dextromethorphan analog dimemorfan attenuates kainate-induced seizures via σ1 receptor activation: comparison with the effects of dextromethorphan. Br J Pharmacol 144:908–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Anand JP et al (2016) The behavioral effects of a mixed efficacy antinociceptive peptide, VRP26, following chronic administration in mice. Psychopharmacol 233:2479–2487

    Article  CAS  Google Scholar 

  6. Brabant C, Quertemont E, Tirelli E (2005) Influence of the dose and the number of drug-context pairings on the magnitude and the long-lasting retention of cocaine-induced conditioned place preference in C57BL/6J mice. Psychopharmacol 180:33–40

    Article  CAS  Google Scholar 

  7. Suzuki T et al (1992) The role of mu-and kappa-opioid receptors in cocaine-induced conditioned place preference. Japanese J Pharmacol 58:435–442

    CAS  Google Scholar 

  8. Bardo MT, Bevins RA (2000) Conditioned place preference: what does it add to our preclinical understanding of drug reward? Psychopharmacol 153:31–43

    Article  CAS  Google Scholar 

  9. Szumlinski KK et al (2002) Unconditioned and conditioned factors contribute to the ‘reinstatement’of cocaine place conditioning following extinction in C57BL/6 mice. Behavioural Brain Res 136:151–160

    Article  CAS  Google Scholar 

  10. Anand JP et al (2018) In vivo effects of μ-opioid receptor agonist/δ-opioid receptor antagonist peptidomimetics following acute and repeated administration. Br J Pharmacol 175:2013–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cordery SF et al (2014) A non-rewarding, non-aversive buprenorphine/naltrexone combination attenuates drug-primed reinstatement to cocaine and morphine in rats in a conditioned place preference paradigm. Addiction Bio 19:575–586

    Article  CAS  Google Scholar 

  12. Marquez P et al (2007) The mu opioid receptor is involved in buprenorphine-induced locomotor stimulation and conditioned place preference. Neuropharmacology 52:1336–1341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marquez P et al (2008) The endogenous OFQ/N/ORL-1 receptor system regulates the rewarding effects of acute cocaine. Neuropharmacology 54:564–568

    Article  CAS  PubMed  Google Scholar 

  14. Brunzell DH et al (2009) Nucleus accumbens CREB activity is necessary for nicotine conditioned place preference. Neuropsychopharmacology 34:1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walters CL et al (2006) The β2 but not α7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacol 184:339–344

    Article  CAS  Google Scholar 

  16. Paris JJ, Fenwick J, McLaughlin JP (2014) Estrous cycle and HIV-1 Tat protein influence cocaine-conditioned place preference and induced locomotion of female mice. Curr HIV Res 12:388–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. García-Carmona J-A et al (2015) Sex differences between CRF1 receptor deficient mice following naloxone-precipitated morphine withdrawal in a conditioned place aversion paradigm: implication of HPA axis. PLoS One 10(4):e0121125–e0121125

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu H et al (2012) Effects of exogenous cholecystokinin octapeptide on acquisition of naloxone precipitated withdrawal induced conditioned place aversion in rats. PLoS One 7:e41860–e41860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bowers, MS et al (20160 N-acetylcysteine decreased nicotine reward-like properties and withdrawal in mice. Psychopharmacology (Berl) 233:995–1003

    Google Scholar 

  20. Cloutier CJ, Kavaliers M, Ossenkopp KP (2018) Lipopolysaccharide (LPS) induced sickness in adolescent female rats alters the acute-phase response and lithium chloride (LiCl)-induced impairment of conditioned place avoidance/aversion learning, following a homotypic LPS challenge in adulthood. Behavioural Br Res 351:121–130

    Article  CAS  Google Scholar 

  21. Tenk CM, Kavaliers M, Ossenkopp KP (2005) Dose response effects of lithium chloride on conditioned place aversions and locomotor activity in rats. Eur J Pharmacol 515:117–127

    Article  CAS  PubMed  Google Scholar 

  22. Tenk CM, Kavaliers M, Ossenkopp KP (2006) The effects of acute corticosterone on lithium chloride-induced conditioned place aversion and locomotor activity in rats. Life Sci 79:1069–1080

    Article  CAS  PubMed  Google Scholar 

  23. Buffalari DM (2016) Nicotine Enhances Footshock- and Lithium Chloride-Conditioned Place Avoidance in Male Rats. Nicotine & tobacco research: official journal of the Society for Research on Nicotine and Tobacco 18:1920–1923

    Article  CAS  Google Scholar 

  24. Bagdas D et al (2016) Expression and pharmacological modulation of visceral pain-induced conditioned place aversion in mice. Neuropharmacology 102:236–243

    Article  CAS  PubMed  Google Scholar 

  25. Bagdas D et al (2018) Effect of nicotine and alpha-7 nicotinic modulators on visceral pain-induced conditioned place aversion in mice. Eur J Pain 22:1419–1427

    Article  CAS  Google Scholar 

  26. Itzhak Y, Martin JL (2002) Cocaine-induced conditioned place preference in mice: induction, extinction and reinstatement by related psychostimulants. Neuropsychopharmacology 26:130

    Article  CAS  PubMed  Google Scholar 

  27. Barr GA, Paredes W, Bridger WH (1985) Place conditioning with morphine and phencyclidine: dose dependent effects. Life Sci 36:363–368

    Article  CAS  PubMed  Google Scholar 

  28. Kota D, Martin BR, Damaj MI (2008) Age-dependent differences in nicotine reward and withdrawal in female mice. Psychopharmacol 198:201–210

    Article  CAS  Google Scholar 

  29. Kota D et al (2007) Nicotine dependence and reward differ between adolescent and adult male mice. J Pharmacol Exp Ther 322:399–407

    Article  CAS  PubMed  Google Scholar 

  30. Parker LA, Mcdonald RV (2000) Reinstatement of both a conditioned place preference and a conditioned place aversion with drug primes. Pharmaco Biochem Behav 66:559–561

    Article  CAS  Google Scholar 

  31. Acquas E et al (1989) SCH 23390 blocks drug-conditioned place-preference and place-aversion: anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacol 99:151–155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Joseph Porter (Virginia Commonwealth University) for providing images of his place conditioning equipment (Fig. 1) and John Traynor (University of Michigan) for providing unpublished data for CPP (Figs. 2 and 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Prus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hillhouse, T., Prus, A. (2021). Conditioned Place Preference Test for Assessing the Rewarding Effects of Drugs of Abuse. In: Fakhoury, M. (eds) The Brain Reward System. Neuromethods, vol 165. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1146-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1146-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1145-6

  • Online ISBN: 978-1-0716-1146-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics