Skip to main content

Cooperativity and Allostery in RNA Systems

  • Protocol
  • First Online:
Allostery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2253))

Abstract

Allostery is among the most basic biological principles employed by biological macromolecules to achieve a biologically active state in response to chemical cues. Although initially used to describe the impact of small molecules on the conformation and activity of protein enzymes, the definition of this term has been significantly broadened to describe long-range conformational change of macromolecules in response to small or large effectors. Such a broad definition could be applied to RNA molecules, which do not typically serve as protein-free cellular enzymes but fold and form macromolecular assemblies with the help of various ligand molecules, including ions and proteins. Ligand-induced allosteric changes in RNA molecules are often accompanied by cooperative interactions between RNA and its ligand, thus streamlining the folding and assembly pathways. This chapter provides an overview of the interplay between cooperativity and allostery in RNA systems and outlines methods to study these two biological principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cruz JA, Westhof E (2009) The dynamic landscapes of RNA architecture. Cell 136:604–609. https://doi.org/10.1016/j.cell.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  2. Dethoff EA, Chugh J, Mustoe AM, Al-Hashimi HM (2012) Functional complexity and regulation through RNA dynamics. Nature 482:322–330. https://doi.org/10.1038/nature10885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Breaker RR (2002) Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol 13:31–39. https://doi.org/10.1016/S0958-1669(02)00281-1

    Article  CAS  PubMed  Google Scholar 

  4. Alemán EA, Lamichhane R, Rueda D (2008) Exploring RNA folding one molecule at a time. Curr Opin Chem Biol 12:647–654. https://doi.org/10.1016/j.cbpa.2008.09.010

    Article  CAS  PubMed  Google Scholar 

  5. Peselis A, Gao A, Serganov A (2015) Cooperativity, allostery and synergism in ligand binding to riboswitches. Biochimie 117:100–109. https://doi.org/10.1016/j.biochi.2015.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Royer WE, Knapp JE, Strand K, Heaslet HA (2001) Cooperative hemoglobins: conserved fold, diverse quaternary assemblies and allosteric mechanisms. Trends Biochem Sci 26:297–304. https://doi.org/10.1016/S0968-0004(01)01811-4

    Article  CAS  PubMed  Google Scholar 

  7. Bohr C, Hasselbalch K, Krogh A (1904) Concerning a biologically important relationship-the influence of the carbon dioxide content of blood on its oxygen binding. Skand Arch Physiol 16:401–412

    Google Scholar 

  8. Williamson JR (2008) Cooperativity in macromolecular assembly. Nat Chem Biol 4:458–465. https://doi.org/10.1038/nchembio.102

    Article  CAS  PubMed  Google Scholar 

  9. Moody EM, Bevilacqua PC (2003) Folding of a stable DNA motif involves a highly cooperative network of interactions. J Am Chem Soc 125:16285–16293. https://doi.org/10.1021/ja038897y

    Article  CAS  PubMed  Google Scholar 

  10. Siegfried NA, Bevilacqua PC (2009) Chapter 13 Thinking inside the box. Designing, implementing, and interpreting thermodynamic cycles to dissect cooperativity in RNA and DNA folding. Methods Enzymol 455:365–393. https://doi.org/10.1016/S0076-6879(08)04213-4

    Article  CAS  PubMed  Google Scholar 

  11. Laing LG, Draper DE (1994) Thermodynamics of RNA folding in a conserved ribosomal RNA domain. J Mol Biol 237:560–576. https://doi.org/10.1006/jmbi.1994.1255

    Article  CAS  PubMed  Google Scholar 

  12. Tuschl T, Gohlke C, Jovin TM et al (1994) A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266:785–789

    Article  CAS  Google Scholar 

  13. Walter NG, Burke JM, Millar DP (1999) Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction. Nat Struct Biol 6:544–549. https://doi.org/10.1038/9316

    Article  CAS  PubMed  Google Scholar 

  14. Haller A, Soulière MF, Micura R (2011) The dynamic nature of RNA as key to understanding riboswitch mechanisms. Acc Chem Res 44:1339–1348. https://doi.org/10.1021/ar200035g

    Article  CAS  PubMed  Google Scholar 

  15. Bothe JR, Nikolova EN, Eichhorn CD et al (2011) Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy. Nat Methods 8:919–931. https://doi.org/10.1038/nmeth.1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tochtrop GP, Richter K, Tang C et al (2002) Energetics by NMR: site-specific binding in a positively cooperative system. Proc Natl Acad Sci 99:1847–1852. https://doi.org/10.1073/pnas.012379199

    Article  CAS  PubMed  Google Scholar 

  17. Velazquez-Campoy A, Freire E (2005) ITC in the post-genomic era...? Priceless. Biophys Chem 115:115–124

    Article  CAS  Google Scholar 

  18. Brown A (2009) Analysis of cooperativity by isothermal titration calorimetry. Int J Mol Sci 10:3457–3477. https://doi.org/10.3390/ijms10083457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Houtman JCD, Brown PH, Bowden B et al (2007) Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling. Protein Sci 16:30–42. https://doi.org/10.1110/ps.062558507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang L, Serganov A, Patel DJ (2010) Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol Cell 40:774–786. https://doi.org/10.1016/j.molcel.2010.11.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Salim NN, Feig AL (2009) Isothermal titration calorimetry of RNA. Methods 47:198–205. https://doi.org/10.1016/j.ymeth.2008.09.003

    Article  CAS  PubMed  Google Scholar 

  22. Recht MI, Williamson JR (2004) RNA tertiary structure and cooperative assembly of a large ribonucleoprotein complex. J Mol Biol 344:395–407. https://doi.org/10.1016/j.jmb.2004.09.009

    Article  CAS  PubMed  Google Scholar 

  23. Feig AL (2009) Studying RNA-RNA and RNA-protein interactions by isothermal titration calorimetry. Methods Enzymol 468:409–422. https://doi.org/10.1016/S0076-6879(09)68019-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kobitski AY, Nierth A, Helm M et al (2007) Mg2+ -dependent folding of a Diels-Alderase ribozyme probed by single-molecule FRET analysis. Nucleic Acids Res 35:2047–2059. https://doi.org/10.1093/nar/gkm072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shaw E, St-Pierre P, McCluskey K et al (2014) Using sm-FRET and denaturants to reveal folding landscapes. Methods Enzymol 549:313–341. https://doi.org/10.1016/B978-0-12-801122-5.00014-3

    Article  CAS  PubMed  Google Scholar 

  26. Hill AV (1910) The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. J Physiol 40:iv–vii. https://doi.org/10.1113/jphysiol.1910.sp001386

    Article  Google Scholar 

  27. Sherman EM, Esquiaqui J, Elsayed G, Ye J-D (2012) An energetically beneficial leader-linker interaction abolishes ligand-binding cooperativity in glycine riboswitches. RNA 18:496–507. https://doi.org/10.1261/rna.031286.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kladwang W, Chou FC, Das R (2012) Automated RNA structure prediction uncovers a kink-turn linker in double glycine riboswitches. J Am Chem Soc 134:1404–1407. https://doi.org/10.1021/ja2093508

    Article  CAS  PubMed  Google Scholar 

  29. Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL, Breaker RR (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279. https://doi.org/10.1126/science.1100829

    Article  CAS  PubMed  Google Scholar 

  30. Lipfert J, Das R, Chu VB et al (2007) Structural transitions and thermodynamics of a glycine-dependent riboswitch from Vibrio cholerae. J Mol Biol 365:1393–1406. https://doi.org/10.1016/j.jmb.2006.10.022

    Article  CAS  PubMed  Google Scholar 

  31. Cheng CY, Chou FC, Kladwang W et al (2015) Consistent global structures of complex RNA states through multidimensional chemical mapping. elife 4:e07600. https://doi.org/10.7554/eLife.07600

    Article  PubMed  PubMed Central  Google Scholar 

  32. Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67. https://doi.org/10.1007/978-1-59745-033-1_4

    Article  CAS  PubMed  Google Scholar 

  33. Misra VK, Draper DE (2002) The linkage between magnesium binding and RNA folding. J Mol Biol 317:507–521. https://doi.org/10.1006/jmbi.2002.5422

    Article  CAS  PubMed  Google Scholar 

  34. Tinoco I, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–281. https://doi.org/10.1006/jmbi.1999.3001

    Article  CAS  PubMed  Google Scholar 

  35. Heilman-Miller SL, Woodson SA (2003) Effect of transcription on folding of the Tetrahymena ribozyme. RNA 9:722–733. https://doi.org/10.1261/rna.5200903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Varani G (1995) Exceptionally stable nucleic acid hairpins. Annu Rev Biophys Biomol Struct 24:379–404. https://doi.org/10.1146/annurev.bb.24.060195.002115

    Article  CAS  PubMed  Google Scholar 

  37. Gutell RR (1994) Collection of small subunit (16S- and 16S-like) ribosomal RNA structures: 1994. Nucleic Acids Res 22:3502–3507. https://doi.org/10.1093/nar/22.17.3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ma H, Proctor DJ, Kierzek E et al (2006) Exploring the energy landscape of a small RNA hairpin. J Am Chem Soc 128:1523–1530. https://doi.org/10.1021/ja0553856

    Article  CAS  PubMed  Google Scholar 

  39. Proctor DJ, Ma H, Kierzek E et al (2004) Folding thermodynamics and kinetics of YNMG RNA hairpins: specific incorporation of 8-bromoguanosine leads to stabilization by enhancement of the folding rate. Biochemistry 43:14004–14014. https://doi.org/10.1021/bi048213e

    Article  CAS  PubMed  Google Scholar 

  40. Fiore JL, Nesbitt DJ (2013) An RNA folding motif: GNRA tetraloop–receptor interactions. Q Rev Biophys 46:223–264. https://doi.org/10.1017/S0033583513000048

    Article  CAS  PubMed  Google Scholar 

  41. Cate JH, Gooding AR, Podell E et al (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273:1678–1685. https://doi.org/10.1126/science.273.5282.1678

    Article  CAS  PubMed  Google Scholar 

  42. Cheong C, Varani G, Tinoco I Jr (1990) Solution structure of an unusually stable RNA hairpin, 5′ GGAC(UUCG)GUCC. Nature 346:680–682. https://doi.org/10.1038/346680a0

    Article  CAS  PubMed  Google Scholar 

  43. Ennifar E, Nikulin A, Tishchenko S et al (2000) The crystal structure of UUCG tetraloop. J Mol Biol 304:35–42. https://doi.org/10.1006/jmbi.2000.4204

    Article  CAS  PubMed  Google Scholar 

  44. Moody EM, Feerrar JC, Bevilacqua PC (2004) Evidence that folding of an RNA tetraloop hairpin is less cooperative than its DNA counterpart. Biochemistry 43:7992–7998. https://doi.org/10.1021/bi049350e

    Article  CAS  PubMed  Google Scholar 

  45. Liphardt J, Onoa B, Smith SB et al (2001) Reversible unfolding of single RNA molecules by mechanical force. Science 292:733–737. https://doi.org/10.1126/science.1058498

    Article  CAS  PubMed  Google Scholar 

  46. Hyeon C, Thirumalai D (2005) Mechanical unfolding of RNA hairpins. Proc Natl Acad Sci U S A 102:6789–6794. https://doi.org/10.1073/pnas.0408314102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hyeon C, Thirumalai D (2007) Mechanical unfolding of RNA: from hairpins to structures with internal multiloops. Biophys J 92:731–743. https://doi.org/10.1529/biophysj.106.093062

    Article  CAS  PubMed  Google Scholar 

  48. Sattin BD, Zhao W, Travers K et al (2008) Direct measurement of tertiary contact cooperativity in RNA folding. J Am Chem Soc 130:6085–6087. https://doi.org/10.1021/ja800919q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bisaria N, Greenfeld M, Limouse C et al (2016) Kinetic and thermodynamic framework for P4-P6 RNA reveals tertiary motif modularity and modulation of the folding preferred pathway. Proc Natl Acad Sci 113:E4956–E4965. https://doi.org/10.1073/pnas.1525082113

    Article  CAS  PubMed  Google Scholar 

  50. Solomatin SV, Greenfeld M, Herschlag D (2010) Multiple native states reveal persistent ruggedness of an RNA folding landscape. Nature 463:681–684. https://doi.org/10.1038/nature08717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Greenfeld M, Solomatin SV, Herschlag D (2011) Removal of covalent heterogeneity reveals simple folding behavior for P4-P6 RNA. J Biol Chem 286:19872–19879. https://doi.org/10.1074/jbc.M111.235465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murphy FL, Cech TR (1993) An independently folding domain of RNA tertiary structure within the Tetrahymena ribozyme. Biochemistry 32:5291–5300. https://doi.org/10.1021/bi00071a003

    Article  CAS  PubMed  Google Scholar 

  53. Murphy FL, Cech TR (1994) GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. J Mol Biol 236:49–63. https://doi.org/10.1006/jmbi.1994.1117

    Article  CAS  PubMed  Google Scholar 

  54. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152:17–24. https://doi.org/10.1016/j.cell.2012.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dann CE, Wakeman CA, Sieling CL et al (2007) Structure and mechanism of a metal-sensing regulatory RNA. Cell 130:878–892. https://doi.org/10.1016/j.cell.2007.06.051

    Article  CAS  PubMed  Google Scholar 

  56. Wakeman CA, Ramesh A, Winkler WC (2009) Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs. J Mol Biol 392:723–735. https://doi.org/10.1016/j.jmb.2009.07.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ramesh A, Wakeman CA, Winkler WC (2011) Insights into metalloregulation by M-box riboswitch RNAs via structural analysis of manganese-bound complexes. J Mol Biol 407:556–570. https://doi.org/10.1016/j.jmb.2011.01.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trausch JJ, Ceres P, Reyes FE, Batey RT (2011) The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 19:1413–1423. https://doi.org/10.1016/j.str.2011.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Price IR, Gaballa A, Ding F et al (2015) Mn2+-sensing mechanisms of yybP-ykoY orphan riboswitches. Mol Cell 57:1110–1123. https://doi.org/10.1016/j.molcel.2015.02.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dambach M, Sandoval M, Updegrove TB et al (2015) The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element. Mol Cell 57:1099–1109. https://doi.org/10.1016/j.molcel.2015.01.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gao A, Serganov A (2014) Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat Chem Biol 10:787–792. https://doi.org/10.1038/nchembio.1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jones CP, Ferré-D’Amaré AR (2014) Crystal structure of a c-di-AMP riboswitch reveals an internally pseudo-dimeric RNA. EMBO J 33:2692–2703. https://doi.org/10.15252/embj.201489209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ren A, Patel DJ (2014) c-di-AMP binds the ydaO riboswitch in two pseudo-symmetry-related pockets. Nat Chem Biol 10:780–786. https://doi.org/10.1038/nchembio.1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Held WA, Ballou B, Mizushima S, Nomura M (1974) Assembly mapping of 30 S ribosomal proteins from Escherichia coli. J Biol Chem 249:3103–3111

    CAS  PubMed  Google Scholar 

  65. Nikulin A, Serganov A, Ennifar E et al (2000) Crystal structure of the S15-rRNA complex. Nat Struct Biol 7:273–277. https://doi.org/10.1107/S0108767300022558

    Article  CAS  PubMed  Google Scholar 

  66. Agalarov SC, Sridhar Prasad G, Funke PM, Stout CD, Williamson JR (2000) Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain. Science 288:107–112. https://doi.org/10.1126/science.288.5463.107

    Article  CAS  PubMed  Google Scholar 

  67. Mulder AM, Yoshioka C, Beck AH et al (2010) Visualizing ribosome biogenesis: parallel assembly pathways for the 30S subunit. Science 330:673–677. https://doi.org/10.1126/science.1193220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Recht MI, Williamson JR (2001) Central domain assembly: thermodynamics and kinetics of S6 and S18 binding to an S15-RNA complex. J Mol Biol 313:35–48. https://doi.org/10.1006/jmbi.2001.5018

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the NIH grants GM112940 and MH112165 (A.S.) and the NIH fellowship F31GM119357 (A.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Serganov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peselis, A., Serganov, A. (2021). Cooperativity and Allostery in RNA Systems. In: Di Paola, L., Giuliani, A. (eds) Allostery. Methods in Molecular Biology, vol 2253. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1154-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1154-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1153-1

  • Online ISBN: 978-1-0716-1154-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics