Skip to main content

Long Noncoding RNAs as Innovative Urinary Diagnostic Biomarkers

  • Protocol
  • First Online:
Urinary Biomarkers

Abstract

The characterization of circulating tumor cells (CTCs) is now widely studied as a promising source of cancer-derived biomarkers because of their role in tumor formation and progression. However, CTCs analysis presents some limitations and no standardized method for CTCs isolation from urine has been defined so far. In fact, besides blood, urine represents an ideal source of noninvasive biomarkers, especially for the early detection of genitourinary tumors. Besides CTCs, long noncoding RNAs (lncRNAs) have also been proposed as potential noninvasive biomarkers, and the evaluation of the diagnostic accuracy of urinary lncRNAs has dramatically increased over the last years, with many studies being published. Therefore, this review provides an update on the clinical utility of urinary lncRNAs as novel biomarkers for the diagnosis of bladder and prostate cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perakis S, Speicher MR (2017) Emerging concepts in liquid biopsies. BMC Med 15(1):75. https://doi.org/10.1186/s12916-017-0840-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Arneth B (2018) Update on the types and usage of liquid biopsies in the clinical setting: a systematic review. BMC Cancer 18(1):527. https://doi.org/10.1186/s12885-018-4433-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bratulic S, Gatto F, Nielsen J (2019) The translational status of cancer liquid biopsies. Regen Eng Transl Med. https://doi.org/10.1007/s40883-019-00141-2

  4. Castro-Giner F, Gkountela S, Donato C, Alborelli I, Quagliata L, Ng CKY, Piscuoglio S, Aceto N (2018) Cancer diagnosis using a liquid biopsy: challenges and expectations. Diagnostics (Basel, Switzerland) 8(2):31. https://doi.org/10.3390/diagnostics8020031

    Article  CAS  Google Scholar 

  5. Ferreira MM, Ramani VC, Jeffrey SS (2016) Circulating tumor cell technologies. Mol Oncol 10(3):374–394. https://doi.org/10.1016/j.molonc.2016.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Micalizzi DS, Maheswaran S, Haber DA (2017) A conduit to metastasis: circulating tumor cell biology. Genes Dev 31(18):1827–1840. https://doi.org/10.1101/gad.305805.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, Goodman JC, Groves MD, Marchetti D (2013) The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 5(180):180ra148. https://doi.org/10.1126/scitranslmed.3005109

    Article  CAS  Google Scholar 

  8. Chen L, Bode AM, Dong Z (2017) Circulating tumor cells: moving biological insights into detection. Theranostics 7(10):2606–2619. https://doi.org/10.7150/thno.18588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, Yu M, Pely A, Engstrom A, Zhu H, Brannigan BW, Kapur R, Stott SL, Shioda T, Ramaswamy S, Ting DT, Lin CP, Toner M, Haber DA, Maheswaran S (2014) Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 158(5):1110–1122. https://doi.org/10.1016/j.cell.2014.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun Y, Wu G, Cheng KS, Chen A, Neoh KH, Chen S, Tang Z, Lee PF, Dai M, Han RPS (2019) CTC phenotyping for a preoperative assessment of tumor metastasis and overall survival of pancreatic ductal adenocarcinoma patients. EBioMedicine 46:133–149. https://doi.org/10.1016/j.ebiom.2019.07.044

    Article  PubMed  PubMed Central  Google Scholar 

  11. Millner LM, Linder MW, Valdes R Jr (2013) Circulating tumor cells: a review of present methods and the need to identify heterogeneous phenotypes. Ann Clin Lab Sci 43(3):295–304

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Grölz D, Hauch S, Schlumpberger M, Guenther K, Voss T, Sprenger-Haussels M, Oelmüller U (2018) Liquid biopsy preservation solutions for standardized pre-analytical workflows-venous whole blood and plasma. Curr Pathobiol Rep 6(4):275–286. https://doi.org/10.1007/s40139-018-0180-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alix-Panabieres C, Pantel K (2013) Circulating tumor cells: liquid biopsy of cancer. Clin Chem 59(1):110–118. https://doi.org/10.1373/clinchem.2012.194258

    Article  CAS  PubMed  Google Scholar 

  14. Massari F, Di Nunno V, Comito F, Cubelli M, Ciccarese C, Iacovelli R, Fiorentino M, Montironi R, Ardizzoni A (2017) Circulating tumor cells in genitourinary tumors. Ther Adv Urol 10(2):65–77. https://doi.org/10.1177/1756287217742564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rzhevskiy AS, Razavi Bazaz S, Ding L, Kapitannikova A, Sayyadi N, Campbell D, Walsh B, Gillatt D, Ebrahimi Warkiani M, Zvyagin AV (2019) Rapid and label-free isolation of tumour cells from the urine of patients with localised prostate cancer using inertial microfluidics. Cancers 12(1):81. https://doi.org/10.3390/cancers12010081

    Article  CAS  PubMed Central  Google Scholar 

  16. Satyal U, Srivastava A, Abbosh PH (2019) Urine biopsy—liquid gold for molecular detection and surveillance of bladder cancer. Front Oncol 9:1266. https://doi.org/10.3389/fonc.2019.01266

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hartford CCR, Lal A (2020) When long noncoding becomes protein coding. Mol Cell Biol 40(6). https://doi.org/10.1128/mcb.00528-19

  18. Clark MB, Mattick JS (2011) Long noncoding RNAs in cell biology. Semin Cell Dev Biol 22(4):366–376. https://doi.org/10.1016/j.semcdb.2011.01.001

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Y, Sun H, Wang H (2016) Long noncoding RNAs in DNA methylation: new players stepping into the old game. Cell Biosci 6:45. https://doi.org/10.1186/s13578-016-0109-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Davidovich C, Cech TR (2015) The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA 21(12):2007–2022. https://doi.org/10.1261/rna.053918.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874

    Article  CAS  PubMed  Google Scholar 

  22. Forrest ME, Khalil AM (2017) Review: regulation of the cancer epigenome by long non-coding RNAs. Cancer Lett 407:106–112. https://doi.org/10.1016/j.canlet.2017.03.040

    Article  CAS  PubMed  Google Scholar 

  23. Jia L, Yang A (2016) Noncoding RNAs in therapeutic resistance of cancer. Adv Exp Med Biol 927:265–295. https://doi.org/10.1007/978-981-10-1498-7_10

    Article  CAS  PubMed  Google Scholar 

  24. Yang Z, Li X, Yang Y, He Z, Qu X, Zhang Y (2016) Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma. Cell Death Dis 7:e2389. https://doi.org/10.1038/cddis.2016.272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deng H, Zhang J, Shi J, Guo Z, He C, Ding L, Hai Tang J, Hou Y (2016) Role of long non-coding RNA in tumor drug resistance. 37. https://doi.org/10.1007/s13277-016-5125-8

  26. Malek E, Jagannathan S, Driscoll JJ (2014) Correlation of long non-coding RNA expression with metastasis, drug resistance and clinical outcome in cancer. Oncotarget 5(18):8027–8038

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu Q, Deng F, Qin Y, Zhao Z, Wu Z, Xing Z, Ji A, Wang QJ (2016) Long non-coding RNA regulation of epithelial–mesenchymal transition in cancer metastasis. Cell Death Dis 7(6):e2254. https://doi.org/10.1038/cddis.2016.149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dhamija S, Diederichs S (2016) From junk to master regulators of invasion: lncRNA functions in migration, EMT and metastasis. Int J Cancer 139(2):269–280. https://doi.org/10.1002/ijc.30039

    Article  CAS  PubMed  Google Scholar 

  29. Lin C-W, Lin P-Y, Yang P-C (2016) Noncoding RNAs in tumor epithelial-to-mesenchymal transition. Stem Cells Int 2016:2732705. https://doi.org/10.1155/2016/2732705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sartori DA, Chan DW (2014) Biomarkers in prostate cancer: what's new? Curr Opin Oncol 26(3):259–264. https://doi.org/10.1097/cco.0000000000000065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang K, Hou Y, Li A, Li Z, Wang W, Xie H, Rong Z, Lou G, Li K (2017) Identification of a six-lncRNA signature associated with recurrence of ovarian cancer. Sci Rep 7:752. https://doi.org/10.1038/s41598-017-00763-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bolha L, Ravnik-Glavač M, Glavač D (2017) Long noncoding RNAs as biomarkers in cancer. Dis Markers 2017:7243968. https://doi.org/10.1155/2017/7243968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qi P, X-y Z, Du X (2016) Circulating long non-coding RNAs in cancer: current status and future perspectives. Mol Cancer 15(1):39. https://doi.org/10.1186/s12943-016-0524-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yuan J-H, Yang F, Wang F, Ma J-Z, Guo Y-J, Tao Q-F, Liu F, Pan W, Wang T-T, Zhou C-C, Wang S-B, Wang Y-Z, Yang Y, Yang N, Zhou W-P, Yang G-S, Sun S-H (2014) A long noncoding RNA activated by TGF-β promotes the invasion-metastasis Cascade in hepatocellular carcinoma. Cancer Cell 25(5):666–681. https://doi.org/10.1016/j.ccr.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  35. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261. https://doi.org/10.1038/nm.3981

    Article  CAS  PubMed  Google Scholar 

  36. Ma P, Pan Y, Li W, Sun C, Liu J, Xu T, Shu Y (2017) Extracellular vesicles-mediated noncoding RNAs transfer in cancer. J Hematol Oncol 10(1):57. https://doi.org/10.1186/s13045-017-0426-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sonoda H, Lee BR, Park K-H, Nihalani D, Yoon J-H, Ikeda M, Kwon S-H (2019) miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep 9(1):4692. https://doi.org/10.1038/s41598-019-40747-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kelemen E, Danis J, Göblös A, Bata-Csörgő Z, Széll M (2019) Exosomal long non-coding RNAs as biomarkers in human diseases. EJIFCC 30(2):224–236

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi T, Gao G, Cao Y (2016) Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Markers 2016:9085195. https://doi.org/10.1155/2016/9085195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F (2017) Bladder cancer incidence and mortality: a global overview and recent trends. Eur Urol 71(1):96–108. https://doi.org/10.1016/j.eururo.2016.06.010

    Article  PubMed  Google Scholar 

  41. Richters A, Aben KKH, Kiemeney LALM (2019) The global burden of urinary bladder cancer: an update. World J Urol 8:1129. https://doi.org/10.1007/s00345-019-02984-4

    Article  Google Scholar 

  42. Cumberbatch MG, Rota M, Catto JWF, La Vecchia C (2016) The role of tobacco smoke in bladder and kidney carcinogenesis: a comparison of exposures and meta-analysis of incidence and mortality risks. Eur Urol 70(3):458–466. https://doi.org/10.1016/j.eururo.2015.06.042

    Article  CAS  PubMed  Google Scholar 

  43. Amin MB, Smith SC, Reuter VE, Epstein JI, Grignon DJ, Hansel DE, Lin O, McKenney JK, Montironi R, Paner GP, Al-Ahmadie HA, Algaba F, Ali S, Alvarado-Cabrero I, Bubendorf L, Cheng L, Cheville JC, Kristiansen G, Cote RJ, Delahunt B, Eble JN, Genega EM, Gulmann C, Hartmann A, Langner C, Lopez-Beltran A, Magi-Galluzzi C, Merce J, Netto GJ, Oliva E, Rao P, Ro JY, Srigley JR, Tickoo SK, Tsuzuki T, Umar SA, Van der Kwast T, Young RH, Soloway MS (2015) Update for the practicing pathologist: the international consultation on urologic disease-European association of urology consultation on bladder cancer. Mod Pathol 28(5):612–630. https://doi.org/10.1038/modpathol.2014.158

    Article  PubMed  Google Scholar 

  44. Batista R, Vinagre N, Meireles S, Vinagre J, Prazeres H, Leão R, Máximo V, Soares P (2020) Biomarkers for bladder cancer diagnosis and surveillance: a comprehensive review. Diagnostics 10(1). https://doi.org/10.3390/diagnostics10010039

  45. Oeyen E, Hoekx L, De Wachter S, Baldewijns M, Ameye F, Mertens I (2019) Bladder cancer diagnosis and follow-up: the current status and possible role of extracellular vesicles. Int J Mol Sci 20(4):821

    Article  CAS  PubMed Central  Google Scholar 

  46. Wang XS, Zhang Z, Wang HC, Cai JL, Xu QW, Li MQ, Chen YC, Qian XP, Lu TJ, Yu LZ, Zhang Y, Xin DQ, Na YQ, Chen WF (2006) Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 12(16):4851–4858. https://doi.org/10.1158/1078-0432.ccr-06-0134

    Article  CAS  PubMed  Google Scholar 

  47. Wang F, Li X, Xie X, Zhao L, Chen W (2008) UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett 582(13):1919–1927. https://doi.org/10.1016/j.febslet.2008.05.012

    Article  CAS  PubMed  Google Scholar 

  48. Xue M, Li X, Wu W, Zhang S, Wu S, Li Z, Chen W (2014) Upregulation of long non-coding RNA urothelial carcinoma associated 1 by CCAAT/enhancer binding protein α contributes to bladder cancer cell growth and reduced apoptosis. Oncol Rep 31(5):1993–2000. https://doi.org/10.3892/or.2014.3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang X, Gong Y, Jin B, Wu C, Yang J, Wang L, Zhang Z, Mao Z (2014) Long non-coding RNA urothelial carcinoma associated 1 induces cell replication by inhibiting BRG1 in 5637 cells. Oncol Rep 32(3):1281–1290. https://doi.org/10.3892/or.2014.3309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang C, Li X, Wang Y, Zhao L, Chen W (2012) Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene 496(1):8–16. https://doi.org/10.1016/j.gene.2012.01.012

    Article  CAS  PubMed  Google Scholar 

  51. Li Z, Li X, Wu S, Xue M, Chen W (2014) Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci 105(8):951–955. https://doi.org/10.1111/cas.12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li HJ, Li X, Pang H, Pan JJ, Xie XJ, Chen W (2015) Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. Jpn J Clin Oncol 45(11):1055–1063. https://doi.org/10.1093/jjco/hyv132

    Article  CAS  PubMed  Google Scholar 

  53. Xue M, Pang H, Li X, Li H, Pan J, Chen W (2016) Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145-ZEB1/2-FSCN1 pathway. Cancer Sci 107(1):18–27. https://doi.org/10.1111/cas.12844

    Article  CAS  PubMed  Google Scholar 

  54. Luo J, Chen J, Li H, Yang Y, Yun H, Yang S, Mao X (2017) LncRNA UCA1 promotes the invasion and EMT of bladder cancer cells by regulating the miR-143/HMGB1 pathway. Oncol Lett 14(5):5556–5562. https://doi.org/10.3892/ol.2017.6886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu J, Li W, Ning J, Yu W, Rao T, Cheng F (2019) Long noncoding RNA UCA1 targets miR-582-5p and contributes to the progression and drug resistance of bladder cancer cells through ATG7-mediated autophagy inhibition. Onco Targets Ther 12:495–508. https://doi.org/10.2147/ott.s183940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y (2014) Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J 281(7):1750–1758. https://doi.org/10.1111/febs.12737

    Article  CAS  PubMed  Google Scholar 

  57. Pan J, Li X, Wu W, Xue M, Hou H, Zhai W, Chen W (2016) Long non-coding RNA UCA1 promotes cisplatin/gemcitabine resistance through CREB modulating miR-196a-5p in bladder cancer cells. Cancer Lett 382(1):64–76. https://doi.org/10.1016/j.canlet.2016.08.015

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Z, Hao H, Zhang C-J, Yang X-Y, He Q, Lin J (2012) Evaluation of novel gene UCA1 as a tumor biomarker for the detection of bladder cancer. Zhonghua Yi Xue Za Zhi 92(6):384–387

    CAS  PubMed  Google Scholar 

  59. Srivastava AK, Singh PK, Rath SK, Dalela D, Goel MM, Bhatt MLB (2014) Appraisal of diagnostic ability of UCA1 as a biomarker of carcinoma of the urinary bladder. Tumor Biol 35(11):11435–11442. https://doi.org/10.1007/s13277-014-2474-z

    Article  CAS  Google Scholar 

  60. Eissa S, Matboli M, Essawy NO, Kotb YM (2015) Integrative functional genetic-epigenetic approach for selecting genes as urine biomarkers for bladder cancer diagnosis. Tumour Biol 36(12):9545–9552. https://doi.org/10.1007/s13277-015-3722-6

    Article  CAS  PubMed  Google Scholar 

  61. Milowich D, Le Mercier M, De Neve N, Sandras F, Roumeguere T, Decaestecker C, Salmon I, Rorive S (2015) Diagnostic value of the UCA1 test for bladder cancer detection: a clinical study. Springerplus 4(1):349. https://doi.org/10.1186/s40064-015-1092-6

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in growth and development. BioEssays 32(6):473–480. https://doi.org/10.1002/bies.200900170

    Article  CAS  PubMed  Google Scholar 

  63. Huang M, Zhong Z, Lv M, Shu J, Tian Q, Chen J (2016) Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma. Oncotarget 7(30):47186–47200. https://doi.org/10.18632/oncotarget.9706

    Article  PubMed  PubMed Central  Google Scholar 

  64. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J (2013) Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J 280(7):1709–1716. https://doi.org/10.1111/febs.12185

    Article  CAS  PubMed  Google Scholar 

  65. Liu C, Chen Z, Fang J, Xu A, Zhang W, Wang Z (2016) H19-derived miR-675 contributes to bladder cancer cell proliferation by regulating p53 activation. Tumour Biol 37(1):263–270. https://doi.org/10.1007/s13277-015-3779-2

    Article  CAS  PubMed  Google Scholar 

  66. Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J (2013) Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333(2):213–221. https://doi.org/10.1016/j.canlet.2013.01.033

    Article  CAS  PubMed  Google Scholar 

  67. Lv M, Zhong Z, Huang M, Tian Q, Jiang R, Chen J (2017) lncRNA H19 regulates epithelial–mesenchymal transition and metastasis of bladder cancer by miR-29b-3p as competing endogenous RNA. Biochim Biophys Acta 1864(10):1887–1899. https://doi.org/10.1016/j.bbamcr.2017.08.001

    Article  CAS  Google Scholar 

  68. Gielchinsky I, Gilon M, Abu-lail R, Matouk I, Hochberg A, Gofrit ON, Ben-Dov IZ (2017) H19 non-coding RNA in urine cells detects urothelial carcinoma: a pilot study. Biomarkers 22(7):661–666. https://doi.org/10.1080/1354750x.2016.1276625

    Article  CAS  PubMed  Google Scholar 

  69. Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ (2016) Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS One 11(1):e0147236. https://doi.org/10.1371/journal.pone.0147236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhan Y, Du L, Wang L, Jiang X, Zhang S, Li J, Yan K, Duan W, Zhao Y, Wang L, Wang Y, Wang C (2018) Expression signatures of exosomal long non-coding RNAs in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Mol Cancer 17(1):142. https://doi.org/10.1186/s12943-018-0893-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu L, Liu Y, Zhuang C, Xu W, Fu X, Lv Z, Wu H, Mou L, Zhao G, Cai Z, Huang W (2015) Inducing cell growth arrest and apoptosis by silencing long non-coding RNA PCAT-1 in human bladder cancer. Tumour Biol 36(10):7685–7689. https://doi.org/10.1007/s13277-015-3490-3

    Article  CAS  PubMed  Google Scholar 

  72. Ying L, Chen Q, Wang Y, Zhou Z, Huang Y, Qiu F (2012) Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol BioSyst 8(9):2289–2294. https://doi.org/10.1039/c2mb25070e

    Article  CAS  PubMed  Google Scholar 

  73. Han Y, Liu Y, Nie L, Gui Y, Cai Z (2013) Inducing cell proliferation inhibition, apoptosis, and motility reduction by silencing long noncoding ribonucleic acid metastasis-associated lung adenocarcinoma transcript 1 in urothelial carcinoma of the bladder. Urology 81(1):209. e201–207. https://doi.org/10.1016/j.urology.2012.08.044

    Article  PubMed  Google Scholar 

  74. Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y (2014) TGF-β-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin Cancer Res 20(6):1531–1541. https://doi.org/10.1158/1078-0432.ccr-13-1455

    Article  CAS  PubMed  Google Scholar 

  75. Abbastabar M, Sarfi M, Golestani A, Karimi A, Pourmand G, Khalili E (2020) Tumor-derived urinary exosomal long non-coding RNAs as diagnostic biomarkers for bladder cancer. EXCLI J 19:301–310. https://doi.org/10.17179/excli2019-1683

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhu H, Li X, Song Y, Zhang P, Xiao Y, Xing Y (2015) Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway. Biochem Biophys Res Commun 467(2):223–228

    Article  CAS  PubMed  Google Scholar 

  77. Yazarlou F, Modarressi MH, Mowla SJ, Oskooei VK, Motevaseli E, Tooli LF, Nekoohesh L, Eghbali M, Ghafouri-Fard S, Afsharpad M (2018) Urinary exosomal expression of long non-coding RNAs as diagnostic marker in bladder cancer. Cancer Manag Res 10:6357–6365. https://doi.org/10.2147/cmar.s186108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Du L, Duan W, Jiang X, Zhao L, Li J, Wang R, Yan S, Xie Y, Yan K, Wang Q, Wang L, Yang Y, Wang C (2018) Cell-free lncRNA expression signatures in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. J Cell Mol Med 22(5):2838–2845. https://doi.org/10.1111/jcmm.13578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu Y, Hann SS (2019) Novel tumor suppressor lncRNA growth arrest-specific 5 (GAS5) in human cancer. Onco Targets Ther 12:8421–8436. https://doi.org/10.2147/ott.s221305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Liu Z, Wang W, Jiang J, Bao E, Xu D, Zeng Y, Tao L, Qiu J (2013) Downregulation of GAS5 promotes bladder cancer cell proliferation, partly by regulating CDK6. PLoS One 8(9):e73991. https://doi.org/10.1371/journal.pone.0073991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Cao Q, Wang N, Qi J, Gu Z, Shen H (2016) Long non-coding RNA-GAS5 acts as a tumor suppressor in bladder transitional cell carcinoma via regulation of chemokine (C-C motif) ligand 1 expression. Mol Med Rep 13(1):27–34. https://doi.org/10.3892/mmr.2015.4503

    Article  CAS  PubMed  Google Scholar 

  82. Wang M, Guo C, Wang L, Luo G, Huang C, Li Y, Liu D, Zeng F, Jiang G, Xiao X (2018) Long noncoding RNA GAS5 promotes bladder cancer cells apoptosis through inhibiting EZH2 transcription. Cell Death Dis 9(2):238. https://doi.org/10.1038/s41419-018-0264-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Yu X, Wang R, Han C, Wang Z, Jin X (2020) A panel of urinary long non-coding RNAs differentiate bladder cancer from Urocystitis. J Cancer 11(4):781–787. https://doi.org/10.7150/jca.37006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yan TH, Lu SW, Huang YQ, Que GB, Chen JH, Chen YP, Zhang HB, Liang XL, Jiang JH (2014) Upregulation of the long noncoding RNA HOTAIR predicts recurrence in stage ta/T1 bladder cancer. Tumour Biol 35(10):10249–10257. https://doi.org/10.1007/s13277-014-2344-8

    Article  CAS  PubMed  Google Scholar 

  85. Liu H, Feng Y, He W, Kang Y, Jiang M (2018) Knockdown of HOTAIR reduces the malignancy of bladder cancer cells via downregulation of invasions and metastasis-related genes. Transl Cancer Res 7(5):1244–1252

    Article  CAS  Google Scholar 

  86. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  87. Rawla P (2019) Epidemiology of prostate cancer. World J Oncol 10(2):63–89. https://doi.org/10.14740/wjon1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hamdy FC, Donovan JL, Lane JA, Mason M, Metcalfe C, Holding P, Davis M, Peters TJ, Turner EL, Martin RM, Oxley J, Robinson M, Staffurth J, Walsh E, Bollina P, Catto J, Doble A, Doherty A, Gillatt D, Kockelbergh R, Kynaston H, Paul A, Powell P, Prescott S, Rosario DJ, Rowe E, Neal DE (2016) 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med 375(15):1415–1424. https://doi.org/10.1056/NEJMoa1606220

    Article  PubMed  Google Scholar 

  89. Cornford P, Bellmunt J, Bolla M, Briers E, De Santis M, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, van der Poel HG, van der Kwast TH, Rouvière O, Wiegel T, Mottet N (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part II: treatment of relapsing, metastatic, and castration-resistant prostate cancer. Eur Urol 71(4):630–642. https://doi.org/10.1016/j.eururo.2016.08.002

    Article  PubMed  Google Scholar 

  90. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, Fossati N, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, Matveev VB, Moldovan PC, van den Bergh RCN, Van den Broeck T, van der Poel HG, van der Kwast TH, Rouvière O, Schoots IG, Wiegel T, Cornford P (2017) EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 71(4):618–629. https://doi.org/10.1016/j.eururo.2016.08.003

    Article  PubMed  Google Scholar 

  91. Hendriks RJ, van Oort IM, Schalken JA (2017) Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions. Prostate Cancer Prostatic Dis 20(1):12–19. https://doi.org/10.1038/pcan.2016.59

    Article  CAS  PubMed  Google Scholar 

  92. Attard G, Parker C, Eeles RA, Schröder F, Tomlins SA, Tannock I, Drake CG, de Bono JS (2016) Prostate cancer. Lancet 387(10013):70–82. https://doi.org/10.1016/s0140-6736(14)61947-4

    Article  PubMed  Google Scholar 

  93. Bussemakers MJG, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HFM, Schalken JA, Debruyne FMJ, Ru N, Isaacs WB (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res 59(23):5975–5979

    CAS  PubMed  Google Scholar 

  94. Hessels D, Klein Gunnewiek JM, van Oort I, Karthaus HF, van Leenders GJ, van Balken B, Kiemeney LA, Witjes JA, Schalken JA (2003) DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol 44(1):8–15.; ; discussion 15-16. https://doi.org/10.1016/s0302-2838(03)00201-x

    Article  CAS  PubMed  Google Scholar 

  95. Ferreira LB, Palumbo A, de Mello KD, Sternberg C, Caetano MS, de Oliveira FL, Neves AF, Nasciutti LE, Goulart LR, Gimba ER (2012) PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling. BMC Cancer 12:507. https://doi.org/10.1186/1471-2407-12-507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lemos AE, Ferreira LB, Batoreu NM, de Freitas PP, Bonamino MH, Gimba ER (2016) PCA3 long noncoding RNA modulates the expression of key cancer-related genes in LNCaP prostate cancer cells. Tumour Biol 37(8):11339–11348. https://doi.org/10.1007/s13277-016-5012-3

    Article  CAS  PubMed  Google Scholar 

  97. Salagierski M, Schalken JA (2012) Molecular diagnosis of prostate cancer: PCA3 and TMPRSS2:ERG gene fusion. J Urol 187(3):795–801. https://doi.org/10.1016/j.juro.2011.10.133

    Article  CAS  PubMed  Google Scholar 

  98. Crawford ED, Rove KO, Trabulsi EJ, Qian J, Drewnowska KP, Kaminetsky JC, Huisman TK, Bilowus ML, Freedman SJ, Glover WL Jr, Bostwick DG (2012) Diagnostic performance of PCA3 to detect prostate cancer in men with increased prostate specific antigen: a prospective study of 1,962 cases. J Urol 188(5):1726–1731. https://doi.org/10.1016/j.juro.2012.07.023

    Article  PubMed  Google Scholar 

  99. Vlaeminck-Guillem V, Ruffion A, André J, Devonec M, Paparel P (2010) Urinary prostate cancer 3 test: toward the age of reason? Urology 75(2):447–453. https://doi.org/10.1016/j.urology.2009.03.046

    Article  PubMed  Google Scholar 

  100. Cary KC, Cooperberg MR (2013) Biomarkers in prostate cancer surveillance and screening: past, present, and future. Ther Adv Urol 5(6):318–329. https://doi.org/10.1177/1756287213495915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Deras IL, Aubin SM, Blase A, Day JR, Koo S, Partin AW, Ellis WJ, Marks LS, Fradet Y, Rittenhouse H, Groskopf J (2008) PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol 179(4):1587–1592. https://doi.org/10.1016/j.juro.2007.11.038

    Article  PubMed  Google Scholar 

  102. Haese A, de la Taille A, van Poppel H, Marberger M, Stenzl A, Mulders PF, Huland H, Abbou CC, Remzi M, Tinzl M, Feyerabend S, Stillebroer AB, van Gils MP, Schalken JA (2008) Clinical utility of the PCA3 urine assay in European men scheduled for repeat biopsy. Eur Urol 54(5):1081–1088. https://doi.org/10.1016/j.eururo.2008.06.071

    Article  PubMed  Google Scholar 

  103. Marks LS, Fradet Y, Deras IL, Blase A, Mathis J, Aubin SM, Cancio AT, Desaulniers M, Ellis WJ, Rittenhouse H, Groskopf J (2007) PCA3 molecular urine assay for prostate cancer in men undergoing repeat biopsy. Urology 69(3):532–535. https://doi.org/10.1016/j.urology.2006.12.014

    Article  PubMed  Google Scholar 

  104. Wu AK, Reese AC, Cooperberg MR, Sadetsky N, Shinohara K (2012) Utility of PCA3 in patients undergoing repeat biopsy for prostate cancer. Prostate Cancer Prostatic Dis 15(1):100–105. https://doi.org/10.1038/pcan.2011.52

    Article  CAS  PubMed  Google Scholar 

  105. Lemos AEG, Matos AR, Ferreira LB, Gimba ERP (2019) The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget 10(61):6589–6603. https://doi.org/10.18632/oncotarget.27284

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ren S, Peng Z, Mao JH, Yu Y, Yin C, Gao X, Cui Z, Zhang J, Yi K, Xu W, Chen C, Wang F, Guo X, Lu J, Yang J, Wei M, Tian Z, Guan Y, Tang L, Xu C, Wang L, Tian W, Wang J, Yang H, Sun Y (2012) RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings. Cell Res 22(5):806–821. https://doi.org/10.1038/cr.2012.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ren S, Liu Y, Xu W, Sun Y, Lu J, Wang F, Wei M, Shen J, Hou J, Gao X, Xu C, Huang J, Zhao Y (2013) Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J Urol 190(6):2278–2287. https://doi.org/10.1016/j.juro.2013.07.001

    Article  CAS  PubMed  Google Scholar 

  108. Wang D, Ding L, Wang L, Zhao Y, Sun Z, Karnes RJ, Zhang J, Huang H (2015) LncRNA MALAT1 enhances oncogenic activities of EZH2 in castration-resistant prostate cancer. Oncotarget 6(38):41045–41055. https://doi.org/10.18632/oncotarget.5728

    Article  PubMed  PubMed Central  Google Scholar 

  109. Li Z-X, Zhu Q-N, Zhang H-B, Hu Y, Wang G, Zhu Y-S (2018) MALAT1: a potential biomarker in cancer. Cancer Manag Res 10:6757–6768. https://doi.org/10.2147/cmar.s169406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang F, Ren S, Chen R, Lu J, Shi X, Zhu Y, Zhang W, Jing T, Zhang C, Shen J, Xu C, Wang H, Wang H, Wang Y, Liu B, Li Y, Fang Z, Guo F, Qiao M, Wu C, Wei Q, Xu D, Shen D, Lu X, Gao X, Hou J, Sun Y (2014) Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer. Oncotarget 5(22):11091–11102. https://doi.org/10.18632/oncotarget.2691

    Article  PubMed  PubMed Central  Google Scholar 

  111. Zhang W, Ren SC, Shi XL, Liu YW, Zhu YS, Jing TL, Wang FB, Chen R, Xu CL, Wang HQ, Wang HF, Wang Y, Liu B, Li YM, Fang ZY, Guo F, Lu X, Shen D, Gao X, Hou JG, Sun YH (2015) A novel urinary long non-coding RNA transcript improves diagnostic accuracy in patients undergoing prostate biopsy. Prostate 75(6):653–661. https://doi.org/10.1002/pros.22949

    Article  CAS  PubMed  Google Scholar 

  112. Işın M, Uysaler E, Özgür E, Köseoğlu H, Şanlı Ö, Yücel ÖB, Gezer U, Dalay N (2015) Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Front Genet 6:168–168. https://doi.org/10.3389/fgene.2015.00168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang X, Ruan Y, Zhao W, Jiang Q, Jiang C, Zhao Y, Xu Y, Sun F, Zhu Y, Xia S, Xu D (2017) Long intragenic non-coding RNA lincRNA-p21 suppresses development of human prostate cancer. Cell Prolif 50(2). https://doi.org/10.1111/cpr.12318

  114. Wang X, Xu Y, Wang X, Jiang C, Han S, Dong K, Shen M, Xu D (2017) LincRNA-p21 suppresses development of human prostate cancer through inhibition of PKM2. Cell Prolif 50(6):e12395. https://doi.org/10.1111/cpr.12395

    Article  CAS  PubMed Central  Google Scholar 

  115. Chen W, Peng W, Huang J, Yu X, Tan K, Chen Y, Lin X, Chen D, Dai Y (2014) Microarray analysis of long non-coding RNA expression in human acute rejection biopsy samples following renal transplantation. Mol Med Rep 10(4):2210–2216. https://doi.org/10.3892/mmr.2014.2420

    Article  CAS  PubMed  Google Scholar 

  116. Tinzl M, Marberger M, Horvath S, Chypre C (2004) DD3PCA3 RNA analysis in urine--a new perspective for detecting prostate cancer. Eur Urol 46(2):182–186.; ; discussion 187. https://doi.org/10.1016/j.eururo.2004.06.004

    Article  CAS  PubMed  Google Scholar 

  117. Fradet Y, Saad F, Aprikian A, Dessureault J, Elhilali M, Trudel C, Mâsse B, Piché L, Chypre C (2004) uPM3, a new molecular urine test for the detection of prostate cancer. Urology 64(2):311–315.; ; discussion 315-316. https://doi.org/10.1016/j.urology.2004.03.052

    Article  PubMed  Google Scholar 

  118. Groskopf J, Aubin SM, Deras IL, Blase A, Bodrug S, Clark C, Brentano S, Mathis J, Pham J, Meyer T, Cass M, Hodge P, Macairan ML, Marks LS, Rittenhouse H (2006) APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem 52(6):1089–1095. https://doi.org/10.1373/clinchem.2005.063289

    Article  CAS  PubMed  Google Scholar 

  119. van Gils MP, Hessels D, van Hooij O, Jannink SA, Peelen WP, Hanssen SL, Witjes JA, Cornel EB, Karthaus HF, Smits GA, Dijkman GA, Mulders PF, Schalken JA (2007) The time-resolved fluorescence-based PCA3 test on urinary sediments after digital rectal examination; a Dutch multicenter validation of the diagnostic performance. Clin Cancer Res 13(3):939–943. https://doi.org/10.1158/1078-0432.ccr-06-2679

    Article  PubMed  Google Scholar 

  120. van Gils MPMQ, Cornel EB, Hessels D, Peelen WP, Witjes JA, Mulders PFA, Rittenhouse HG, Schalken JA (2007) Molecular PCA3 diagnostics on prostatic fluid. Prostate 67(8):881–887. https://doi.org/10.1002/pros.20564

    Article  CAS  PubMed  Google Scholar 

  121. Sokoll LJ, Ellis W, Lange P, Noteboom J, Elliott DJ, Deras IL, Blase A, Koo S, Sarno M, Rittenhouse H, Groskopf J, Vessella RL (2008) A multicenter evaluation of the PCA3 molecular urine test: pre-analytical effects, analytical performance, and diagnostic accuracy. Clin Chim Acta 389(1–2):1–6. https://doi.org/10.1016/j.cca.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  122. Shappell SB, Fulmer J, Arguello D, Wright BS, Oppenheimer JR, Putzi MJ (2009) PCA3 urine mRNA testing for prostate carcinoma: patterns of use by community urologists and assay performance in reference laboratory setting. Urology 73(2):363–368. https://doi.org/10.1016/j.urology.2008.08.459

    Article  PubMed  Google Scholar 

  123. Yan L, Wang P, Fang W, Liang C (2020) Cancer-associated fibroblasts–derived exosomes-mediated transfer of LINC00355 regulates bladder cancer cell proliferation and invasion. Cell Biochem Funct 38(3):257–265. https://doi.org/10.1002/cbf.3462

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Fratta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brisotto, G., Guerrieri, R., Colizzi, F., Steffan, A., Montico, B., Fratta, E. (2021). Long Noncoding RNAs as Innovative Urinary Diagnostic Biomarkers. In: Salvi, S., Casadio, V. (eds) Urinary Biomarkers. Methods in Molecular Biology, vol 2292. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1354-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1354-2_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1353-5

  • Online ISBN: 978-1-0716-1354-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics