Skip to main content

Application of Strigolactones to Plant Roots to Influence Formation of Symbioses

  • Protocol
  • First Online:
Strigolactones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2309))

Abstract

Strigolactones play a potent role in the rhizosphere as a signal to symbiotic microbes including arbuscular mycorrhizal fungi and rhizobial bacteria. This chapter outlines guidelines for application of strigolactones to pea roots to influence symbiotic relationships, and includes careful consideration of type of strigolactones applied, solvent use, frequency of application and nutrient regime to optimize experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie X, Yoneyama K, Kisugi T, Nomura T, Akiyama K, Asami T, Yoneyama K (2015) Strigolactones are transported from roots to shoots, although not through the xylem. J Pest Sci 40(5):214–216

    Article  CAS  Google Scholar 

  2. Foo E, Turnbull CG, Beveridge CA (2001) Long-distance signaling and the control of branching in therms1 mutant of pea. Plant Physiol 126(1):203–209

    Article  CAS  Google Scholar 

  3. Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, Bachelier JB, Reinhardt D, Bours R, Bouwmeester HJ, Martinoia E (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483(7389):341–344

    Article  CAS  Google Scholar 

  4. López-Ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci 22(6):527–537

    Article  Google Scholar 

  5. Rozpadek P, Domka AM, Nosek M, Wazny R, Jedrzejczyk RJ, Wiciarz M, Turnau K (2018) The role of strigolactone in the cross-talk between Arabidopsis thaliana and the endophytic fungus Mucor sp. Front Microbiol 9:441

    Article  Google Scholar 

  6. Carvalhais LC, Rincon-Florez VA, Brewer PB, Beveridge CA, Dennis PG, Schenk PM (2019) The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere 9:18–26

    Article  Google Scholar 

  7. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455(7210):189–194

    Article  CAS  Google Scholar 

  8. Foo E (2013) Auxin influences strigolactones in pea mycorrhizal symbiosis. J Plant Physiol 170(5):523–528

    Article  CAS  Google Scholar 

  9. Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, Druege U, Hause B, Bucher M, Kretzschmar T, Bossolini E, Kuhlemeier C, Martinoia E, Franken P, Scholz U, Reinhardt D (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant J 64(6):1002–1017

    Article  CAS  Google Scholar 

  10. Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, García-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42(2):383–385

    Article  CAS  Google Scholar 

  11. Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234(5):1073–1081

    Article  CAS  Google Scholar 

  12. Liu J, Novero M, Charnikhova T, Ferrandino A, Schubert A, Ruyter-Spira C, Bonfante P, Lovisolo C, Bouwmeester HJ, Cardinale F (2013) Carotenoid cleavage dioxygenase 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J Exp Bot 64(7):1967–1981

    Article  CAS  Google Scholar 

  13. De Cuyper C, Fromentin J, Yocgo RE, De Keyser A, Guillotin B, Kunert K, Boyer FD, Goormachtig S (2015) From lateral root density to nodule number, the strigolactone analogue GR24 shapes the root architecture of Medicago truncatula. J Exp Bot 66(1):137–146

    Article  Google Scholar 

  14. Haq BU, Ahmad MZ, Ur Rehman N, Wang J, Li P, Li D, Zhao J (2017) Functional characterization of soybean strigolactone biosynthesis and signaling genes in Arabidopsis MAX mutants and GmMAX3 in soybean nodulation. BMC Plant Biol 17(1):259

    Article  Google Scholar 

  15. McAdam EL, Hugill C, Fort S, Samain E, Cottaz S, Davies NW, Reid JB, Foo E (2017) Determining the site of action of strigolactones during nodulation. Plant Physiol 175(1):529–542

    Article  CAS  Google Scholar 

  16. Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K (2012) The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol 196(4):1208–1216

    Article  CAS  Google Scholar 

  17. Mori N, Nishiuma K, Sugiyama T, Hayashi H, Akiyama K (2016) Carlactone-type strigolactones and their synthetic analogues as inducers of hyphal branching in arbuscular mycorrhizal fungi. Phytochemistry 130:90–98

    Article  CAS  Google Scholar 

  18. Illana A, García-Garrido JM, Sampedro I, Ocampo JA, Vierheilig H (2011) Strigolactones seem not to be involved in the nonsusceptibilty of arbuscular mycorrhizal (AM) nonhost plants to AM fungi. Botany 89(4):285–288

    Article  Google Scholar 

  19. Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4(7):e226

    Article  Google Scholar 

  20. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435(7043):824–827

    Article  CAS  Google Scholar 

  21. Moscatiello R, Squartini A, Mariani P, Navazio L (2010) Flavonoid-induced calcium signalling in Rhizobium leguminosarum bv viciae. New Phytol 188(3):814–823

    Article  CAS  Google Scholar 

  22. Tambalo DD, Vanderlinde EM, Robinson S, Halmillawewa A, Hynes MF, Yost CK (2014) Legume seed exudates and Physcomitrella patens extracts influence swarming behavior in Rhizobium leguminosarum. Can J Microbiol 60(1):15–24

    Article  CAS  Google Scholar 

  23. Peláez-Vico MA, Bernabéu-Roda L, Kohlen W, Soto MJ, López-Ráez JA (2016) Strigolactones in the Rhizobium-legume symbiosis: stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Sci 245:119–127

    Article  Google Scholar 

  24. Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17(12):1469–1474

    Article  CAS  Google Scholar 

  25. Johnson X, Brcich T, Dun EA, Goussot M, Haurogne K, Beveridge CA, Rameau C (2006) Branching genes are conserved across species. Genes controlling a novel signal in pea are coregulated by other long-distance signals. Plant Physiol 142(3):1014–1026

    Article  CAS  Google Scholar 

  26. Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6(1):76–87

    Article  CAS  Google Scholar 

  27. Zwanenburg B, Blanco-Ania D (2018) Strigolactones: new plant hormones in the spotlight. J Exp Bot 69(9):2205–2218

    Article  CAS  Google Scholar 

  28. Halouzka R, Tarkowski P, Zwanenburg B, Cavar Zeljkovic S (2018) Stability of strigolactone analog GR24 toward nucleophiles. Pest Manag Sci 74(4):896–904

    Article  CAS  Google Scholar 

  29. Bromhead LJ, Smith J, McErlean CSP (2015) Chemistry of the synthetic strigolactone mimic GR24. Aust J Chem 68(8):1221–1227

    Article  CAS  Google Scholar 

  30. Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. In: Technical communication no. 22 of the commonwealth bureau of horticulture and plantation crops, east malling, Maidstone, Kent. pp 547

    Google Scholar 

  31. Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64(12):5004–5007

    Article  CAS  Google Scholar 

  32. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115(3):495–501

    Article  CAS  Google Scholar 

  33. Jia K-P, Baz L, Al-Babili S (2018) From carotenoids to strigolactones. J Exp Bot 69(9):2189–2204

    Article  CAS  Google Scholar 

  34. Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165(3):1221–1232

    Article  CAS  Google Scholar 

  35. Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51(7):1104–1117

    Article  CAS  Google Scholar 

  36. Carroll BJ, Mathews A (2018) Nitrate inhibition of nodulation in legumes. In: Molecular biology of symbiotic nitrogen fixation. CRC Press, Boca Raton, pp 159–180

    Chapter  Google Scholar 

  37. Foo E (2017) Role of plant hormones and small signalling molecules in nodulation under P stress. In: Sulieman S, L-SP T (eds) Legume nitrogen fixation in soils with low phosphorous availability: adaptation and regulatory implication. Springer, Cham, pp 153–167

    Google Scholar 

  38. Broughton W, Dilworth M (1971) Control of leghaemoglobin synthesis in snake beans. Biochem J 125(4):1075–1080

    Article  CAS  Google Scholar 

  39. Balzergue C, Chabaud M, Barker DG, Becard G, Rochange SF (2013) High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci 4:426

    Article  Google Scholar 

  40. Nouri E, Breuillin-Sessoms F, Feller U, Reinhardt D (2014) Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida. PLoS One 9(3):e90841

    Article  Google Scholar 

  41. Blake SN, Barry KM, Gill WM, Reid JB, Foo E (2016) The role of strigolactones and ethylene in disease caused by Pythium irregulare. Mol Plant Pathol 17(5):680–690

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloise Foo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Foo, E. (2021). Application of Strigolactones to Plant Roots to Influence Formation of Symbioses. In: Prandi, C., Cardinale, F. (eds) Strigolactones. Methods in Molecular Biology, vol 2309. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1429-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1429-7_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1428-0

  • Online ISBN: 978-1-0716-1429-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics