Skip to main content

Chemotropic Assay for Testing Fungal Response to Strigolactones and Strigolactone-Like Compounds

  • Protocol
  • First Online:
Strigolactones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2309))

Abstract

Current knowledge on the mechanism of strigolactones (SLs) as signaling molecules during specific interactions in the rhizosphere is mainly related to the control of germination of parasitic weed seeds and hyphal branching of arbuscular mycorrhizal fungi. Thus, the role of plant secreted SLs in regulating the growth and development of root-colonizing fungi still remains controversial. Fusarium oxysporum can sense and respond to extracellular signals through oriented germ tube emergence and redirectioning of hyphal growth toward gradients of nutrients, sex pheromones, or plant root exudates. However, chemoattractant activity of SLs against microorganisms living in the soil has not been tested so far. Here we propose a quantitative chemotropic assay to understand if and how soil fungi could sense gradients of SLs and SLs-like sources. In the example case of F. oxysporum, hyphae of fungal representative mutants preferentially grow toward the synthetic SL analog GR24; and this chemotropic response requires conserved elements of the fungal invasive growth mitogen-activated protein kinase (MAPK) cascade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pieterse CMJ, Van der Does D, Zamioudis C et al (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  Google Scholar 

  2. Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307

    Article  CAS  Google Scholar 

  3. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  Google Scholar 

  4. Besserer A, Bécard G, Jauneau A et al (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413

    Article  CAS  Google Scholar 

  5. Bouwmeester HJ, Matusova R, Zhongkui S et al (2003) Secondary metabolite signalling in host-parasitic plant interactions. Curr Opin Plant Biol 6:358–364

    Article  CAS  Google Scholar 

  6. López-Ráez JA, Matusova R, Cardoso C et al (2009) Strigolactones: ecological significance and use as a target for parasitic plant control. Pest Manag Sci 65:471–477

    Article  Google Scholar 

  7. Kretzschmar T, Kohlen W, Sasse J et al (2012) A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341–344

    Article  CAS  Google Scholar 

  8. Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081

    Article  CAS  Google Scholar 

  9. Cook CE, Whichard LP, Wall M et al (1972) Germination stimulants. II. Structure of strigol, a potent seed germination stimulant for witchweed (Striga lutea). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  10. Belmondo S, Marschall R, Tudzynski P et al (2017) Identification of genes involved in fungal responses to strigolactones using mutants from fungal pathogens. Curr Genet 63:201–213

    Article  CAS  Google Scholar 

  11. Boari A, Ciasca B, Pineda-Martos R et al (2016) Parasitic weed management by using strigolactone-degrading fungi. Pest Manag Sci 72:2043–2047

    Article  CAS  Google Scholar 

  12. Carvalhais LC, Rincon-Florez VA, Brewer PB et al (2019) The ability of plants to produce strigolactones affects rhizosphere community composition of fungi but not bacteria. Rhizosphere 9:18–26

    Article  Google Scholar 

  13. Dor E, Joel DM, Kapulnik Y et al (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234:419–427

    Article  CAS  Google Scholar 

  14. Steinkellner S, Lendzemo V, Langer I et al (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  CAS  Google Scholar 

  15. Torres-Vera R, García JM, Pozo MJ et al (2014) Do strigolactones contribute to plant defence? Mol Plant Pathol 15:211–216

    Article  CAS  Google Scholar 

  16. Turrà D, Pineda-Martos R, Boari A et al (2017) Chemotropic sensing responses of fungal biocontrol agents to strigolactones. The three-player system: host-parasite-Fusarium. In: Abstracts of the 2nd international congress on strigolactones, Turin, 27–30 March 2017

    Google Scholar 

  17. Edel-Hermann V, Lecomte C (2019) Current status of Fusarium oxysporum formae speciales and races. Phytopathology 109:512–530

    Article  CAS  Google Scholar 

  18. Turrá D, Di Pietro A (2015) Chemotropic sensing in fungus-plant interactions. Curr Opin Plant Biol 26:135–140

    Article  Google Scholar 

  19. Turrà D, El Ghalid M, Rossi F et al (2015) Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 527:521–524

    Article  Google Scholar 

  20. Martin SG (2019) Molecular mechanisms of chemotropism and cell fusion in unicellular fungi. J Cell Sci 132:jcs230706

    Article  CAS  Google Scholar 

  21. Foo E, Blake SN, Fisher BJ et al (2016) The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum. Planta 243:1387–1396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grant BIO2016-78923-R from the Spanish Ministerio de Economía y Competitividad (MINECO) to A.D.P. This study was inspired by the COST Action FA1206 STREAM. The authors are grateful to Drs. Maurizio Vurro and Angela Boari, ISPA-CNR, Bari, Italy; and Drs. Francesca Cardinale and Ivan Visentin, StrigoLab, Torino, Italy (https://strigolab.eu/) for the kind gift of the SL standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Turrà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pineda-Martos, R., Di Pietro, A., Turrà, D. (2021). Chemotropic Assay for Testing Fungal Response to Strigolactones and Strigolactone-Like Compounds. In: Prandi, C., Cardinale, F. (eds) Strigolactones. Methods in Molecular Biology, vol 2309. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1429-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1429-7_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1428-0

  • Online ISBN: 978-1-0716-1429-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics