Skip to main content

Chemogenetic Control of Protein Localization and Mammalian Cell Signaling by SLIPT

  • Protocol
  • First Online:
Mammalian Cell Engineering

Abstract

Chemical control of protein localization is a powerful approach for manipulating mammalian cellular processes. Self-localizing ligand-induced protein translocation (SLIPT) is an emerging platform that enables control of protein localization in living mammalian cells using synthetic self-localizing ligands (SLs). We recently established a chemogenetic SLIPT system, in which any protein of interest fused to an engineered variant of Escherichia coli dihydrofolate reductase, DHFRiK6, can be rapidly and specifically translocated from the cytoplasm to the inner leaflet of the plasma membrane (PM) using a trimethoprim (TMP)-based PM-targeting SL, mDcTMP. The mDcTMP-mediated PM recruitment of DHFRiK6-fusion proteins can be efficiently returned to the cytoplasm by subsequent addition of free TMP, enabling temporal and reversible control over the protein localization. Here we describe the use of this mDcTMP/DHFRiK6-based SLIPT system for inducing (1) reversible protein translocation and (2) synthetic activation of the Raf/ERK pathway. This system provides a simple and versatile tool in mammalian synthetic biology for temporally manipulating various signaling molecules and pathways at the PM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Teruel MN, Meyer T (2000) Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. Cell 103:181–184

    Article  CAS  Google Scholar 

  2. Hurley JH, Meyer T (2001) Subcellular targeting by membrane lipids. Curr Opin Cell Biol 13:146–152

    Article  CAS  Google Scholar 

  3. DeRose R, Miyamoto T, Inoue T (2013) Manipulating signaling at will: chemically-inducible dimerization (CID) techniques resolve problems in cell biology. Pflügers Arch 465:409–417

    Article  CAS  Google Scholar 

  4. Feng S, Laketa V, Stein F, Rutkowska A, MacNamara A, Depner S, Klingmüller U, Saez-Rodriguez J, Schultz C (2014) A rapidly reversible chemical dimerizer system to study lipid signaling in living cells. Angew Chem Int Ed 53:6720–6723

    Article  CAS  Google Scholar 

  5. Liu P, Calderon A, Konstantinidis G, Hou J, Voss S, Chen X, Li F, Banerjee S, Hoffmann JE, Theiss C, Dehmelt L, Wu YW (2014) A bioorthogonal small-molecule-switch system for controlling protein function in live cells. Angew Chem Int Ed 53:10049–10055

    Article  CAS  Google Scholar 

  6. Ballister ER, Aonbangkhen C, Mayo AM, Lampson MA, Chenoweth DM (2014) Localized light-induced protein dimerization in living cells using a photocaged dimerizer. Nat Commun 5:5475

    Article  Google Scholar 

  7. Foight GW, Wang Z, Wei CT, Greisen PJ, Warner KM, Cunningham-Bryant D, Park K, Brunette TJ, Sheffler W, Baker D, Maly DJ (2019) Multi-input chemical control of protein dimerization for programming graded cellular responses. Nat Biotechnol 37:1209–1216

    Article  CAS  Google Scholar 

  8. Ishida M, Watanabe H, Takigawa K, Kurishita Y, Oki C, Nakamura A, Hamachi I, Tsukiji S (2013) Synthetic self-localizing ligands that control the spatial location of proteins in living cells. J Am Chem Soc 135:12684–12689

    Article  CAS  Google Scholar 

  9. Nakamura A, Oki C, Kato K, Fujinuma S, Maryu G, Kuwata K, Yoshii T, Matsuda M, Aoki K, Tsukiji S (2020) Engineering orthogonal, plasma membrane-specific SLIPT systems for multiplexed chemical control of signaling pathways in living single cells. ACS Chem Biol 15:1004–1015

    Article  CAS  Google Scholar 

  10. Nakamura A, Oki C, Sawada S, Yoshii T, Kuwata K, Rudd AK, Devaraj NK, Noma K, Tsukiji S (2020) Designer palmitoylation motif-based self-localizing ligand for sustained control of protein localization in living cells and Caenorhabditis elegans. ACS Chem Biol 15:837–843

    Article  CAS  Google Scholar 

  11. Nakamura A, Katahira R, Sawada S, Shinoda E, Kuwata K, Yoshii T, Tsukiji S (2020) Chemogenetic control of protein anchoring to endomembranes in living cells with lipid-tethered small molecules. Biochemistry 59:205–211

    Article  CAS  Google Scholar 

  12. Miller LW, Cai Y, Sheetz MP, Cornish VW (2005) In vivo protein labeling with trimethoprim conjugates: a flexible chemical tag. Nat Methods 2:255–257

    Article  CAS  Google Scholar 

  13. Hatano Y, Suzuki S, Nakamura A, Yoshii T, Atsuta-Tsunoda K, Aoki K, Tsukiji S (2020) A chemogenetic platform for controlling plasma membrane signaling and synthetic signal oscillation. bioRxiv. https://doi.org/10.1101/2021.03.16.435568

  14. Aoki K, Kumagai Y, Sakurai A, Komatsu N, Fujita Y, Shionyu C, Matsuda M (2013) Stochastic ERK activation induced by noise and cell-to-cell propagation regulates cell density-dependent proliferation. Mol Cell 52:529–540

    Article  CAS  Google Scholar 

  15. Maryu G, Matsuda M, Aoki K (2016) Multiplexed fluorescence imaging of ERK and Akt activities and cell-cycle progression. Cell Struct Funct 41:81–92

    Article  CAS  Google Scholar 

  16. Regot S, Hughey JJ, Bajar BT, Carrasco S, Covert MW (2014) High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157:1724–1734

    Article  CAS  Google Scholar 

  17. Ando T, Tsukiji S, Tanaka T, Nagamune T (2007) Construction of a small-molecule-integrated semisynthetic split intein for in vivo protein ligation. Chem Commun 47:4995–4997

    Article  Google Scholar 

  18. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598

    Article  CAS  Google Scholar 

  19. Komatsu N, Aoki K, Yamada M, Yukinaga H, Fujita Y, Kamioka Y, Matsuda M (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656

    Article  CAS  Google Scholar 

  20. Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363–369

    Article  CAS  Google Scholar 

  21. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Akinobu Nakamura (ExCELLS, National Institutes of Natural Sciences) for his contribution to the development and application of the mDcTMP/DHFRiK6-based SLIPT system. This work was supported by JSPS Grants-in-Aid for Scientific Research (KAKENHI): grant nos. 15H03835, 15H05949 “Resonance Bio,” 18H02086, and 18H04546 and 20H04706 “Chemistry for Multimolecular Crowding Biosystems” (to S.T.). S.S. acknowledges scholarship support from the Hirota Scholarship Society and the SUNBOR Scholarship from the Suntory Foundation for Life Sciences.

Conflicts of Interest: S.S., T.Y., and S.T. are coinventors on a patent application related to this work. Y.H. declares no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Tsukiji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Suzuki, S., Hatano, Y., Yoshii, T., Tsukiji, S. (2021). Chemogenetic Control of Protein Localization and Mammalian Cell Signaling by SLIPT. In: Kojima, R. (eds) Mammalian Cell Engineering. Methods in Molecular Biology, vol 2312. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1441-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1441-9_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1440-2

  • Online ISBN: 978-1-0716-1441-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics