Skip to main content

Interface Prediction for GPCR Oligomerization Between Transmembrane Helices

  • Protocol
  • First Online:
Computational Design of Membrane Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2315))

Abstract

Oligomers of G protein-coupled receptors (GPCRs) are closely related to their biochemical and biological functions and have been conserved during the course of molecular evolution. The mechanisms of GPCR interactions and the reason why GPCRs interact between themselves have remained elusive. Accurate interface prediction is useful to generate guidelines for mutation and inhibition experiments and would accelerate investigations of the molecular mechanisms of GPCR oligomerization and signaling. We have developed a method to predict the interfaces for GPCR oligomerization. Our method detects clusters of conserved residues along the surfaces of transmembrane helices, using a multiple sequence alignment and a target GPCR or closely related structure. This chapter outlines our method and introduces some problems that occur with it, along with our future direction to extend the method for interface predictions of general membrane proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borroto-Escuela DO, Fuxe K (2019) Oligomeric receptor complexes and their allosteric receptor-receptor interactions in the plasma membrane represent a new biological principle for integration of signals in the CNS. Front Mol Neurosci 12:230. https://doi.org/10.3389/fnmol.2019.00230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Möller J, Isbilir A, Sungkaworn T et al (2020) Single-molecule analysis reveals agonist-specific dimer formation of μ-opioid receptors. Nat Chem Biol 16(9):946–954. https://doi.org/10.1038/s41589-020-0566-1

    Article  CAS  PubMed  Google Scholar 

  3. Milligan G, Canals M, Pediani JD et al (2006) The role of GPCR dimerisation/oligomerisation in receptor signalling. Ernst Schering Found Symp Proc (2):145–161. https://doi.org/10.1007/2789_2006_007

  4. Nemoto W, Toh H (2006) Membrane interactive alpha-helices in GPCRs as a novel drug target. Curr Protein Pept Sci 7:561–575. https://doi.org/10.2174/138920306779025657

    Article  CAS  PubMed  Google Scholar 

  5. Ferré S, Casadó V, Devi LA et al (2014) G protein-coupled receptor oligomerization revisited: functional and pharmacological perspectives. Pharmacol Rev 66:413–434. https://doi.org/10.1124/pr.113.008052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5:30–34. https://doi.org/10.1038/sj.embor.7400052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nemoto W, Toh H (2005) Prediction of interfaces for oligomerizations of G-protein coupled receptors. Proteins 58:644–660. https://doi.org/10.1002/prot.20332

    Article  CAS  PubMed  Google Scholar 

  8. Gurevich VV, Gurevich EV (2008) GPCR monomers and oligomers: it takes all kinds. Trends Neurosci 31:74–81. https://doi.org/10.1016/j.tins.2007.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kniazeff J, Prézeau L, Rondard P et al (2011) Dimers and beyond: the functional puzzles of class C GPCRs. Pharmacol Ther 130:9–25. https://doi.org/10.1016/j.pharmthera.2011.01.006

    Article  CAS  PubMed  Google Scholar 

  10. Romano C, Miller JK, Hyrc K et al (2001) Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGlu5 dimerization. Mol Pharmacol 59:46–53. https://doi.org/10.1124/mol.59.1.46

    Article  CAS  PubMed  Google Scholar 

  11. Pagano A, Rovelli G, Mosbacher J et al (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABA(b) receptors. J Neurosci 21:1189–1202. https://doi.org/10.1523/JNEUROSCI.21-04-01189.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lichtarge O, Bourne HR, Cohen FE (1996) An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 257:342–358. https://doi.org/10.1006/jmbi.1996.0167

    Article  CAS  PubMed  Google Scholar 

  13. Soyer OS, Dimmic MW, Neubig RR, Goldstein RA (2003) Dimerization in aminergic G-protein-coupled receptors: application of a hidden- site class model of evolution. Biochemistry 42:14522–14531. https://doi.org/10.1021/bi035097r

    Article  CAS  PubMed  Google Scholar 

  14. Saito A, Tsuchiya D, Sato S et al (2020) Update of the GRIP web service. J Recept Signal Transduct Res 40:348–356. https://doi.org/10.1080/10799893.2020.1734821

    Article  CAS  PubMed  Google Scholar 

  15. Nemoto W, Fukui K, Toh H (2009) GRIP: a server for predicting interfaces for GPCR oligomerization. J Recept Signal Transduct Res 29:312–317. https://doi.org/10.3109/10799890903295143

    Article  CAS  PubMed  Google Scholar 

  16. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  Google Scholar 

  17. Schäffer AA, Aravind L, Madden TL et al (2001) Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29:2994–3005. https://doi.org/10.1093/nar/29.14.2994

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kozma D, Simon I, Tusnády GE (2013) PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res 41:D524–D529. https://doi.org/10.1093/nar/gks1169

    Article  CAS  PubMed  Google Scholar 

  19. Berman HM (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pruitt KD, Tatusova T, Brown GR, Maglott DR (2012) NCBI reference sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res 40:D130–D135. https://doi.org/10.1093/nar/gkr1079

    Article  CAS  PubMed  Google Scholar 

  21. UniProt Consortium (2014) Activities at the universal protein resource (UniProt). Nucleic Acids Res 42:D191–D198. https://doi.org/10.1093/nar/gkt1140

    Article  CAS  Google Scholar 

  22. Nemoto W, Toh H (2012) Functional region prediction with a set of appropriate homologous sequences-an index for sequence selection by integrating structure and sequence information with spatial statistics. BMC Struct Biol 12:11. https://doi.org/10.1186/1472-6807-12-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Valdar WSJ (2002) Scoring residue conservation. Proteins 48:227–241. https://doi.org/10.1002/prot.10146

    Article  CAS  PubMed  Google Scholar 

  24. Shi J, Blundell TL, Mizuguchi K (2001) FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol 310:243–257. https://doi.org/10.1006/jmbi.2001.4762

    Article  CAS  PubMed  Google Scholar 

  25. Berman HM, Westbrook J, Feng Z et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borroto-Escuela DO, Brito I, Romero-Fernandez W et al (2014) The G protein-coupled receptor heterodimer network (GPCR-HetNet) and its hub components. Int J Mol Sci 15:8570–8590. https://doi.org/10.3390/ijms15058570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khelashvili G, Dorff K, Shan J et al (2010) GPCR-OKB: the G protein coupled receptor oligomer knowledge base. Bioinformatics 26:1804–1805. https://doi.org/10.1093/bioinformatics/btq264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nemoto W, Fukui K, Toh H (2011) GRIPDB - G protein coupled receptor interaction partners DataBase. J Recept Signal Transduct Res 31:199–205. https://doi.org/10.3109/10799893.2011.563312

    Article  CAS  PubMed  Google Scholar 

  29. Nemoto W, Yamanishi Y, Limviphuvadh V et al (2016) GGIP: structure and sequence-based GPCR-GPCR interaction pair predictor. Proteins 84:1224–1233. https://doi.org/10.1002/prot.25071

    Article  CAS  PubMed  Google Scholar 

  30. Babu M, Vlasblom J, Pu S et al (2012) Interaction landscape of membrane-protein complexes in Saccharomyces cerevisiae. Nature 489:585–589. https://doi.org/10.1038/nature11354

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research from the Ministry of Education Culture, Sports, Science and Technology of Japan (25870764, 18K06199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Nemoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nemoto, W., Saito, A. (2021). Interface Prediction for GPCR Oligomerization Between Transmembrane Helices. In: Moreira, I.S., Machuqueiro, M., Mourão, J. (eds) Computational Design of Membrane Proteins. Methods in Molecular Biology, vol 2315. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1468-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1468-6_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1467-9

  • Online ISBN: 978-1-0716-1468-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics