Skip to main content

Ionic Liquids: Design and Applications

  • Protocol
  • First Online:
Green Chemistry in Drug Discovery

Abstract

In this chapter, which is divided in two parts, several aspects concerning ionic liquids are discussed. Part one contains a brief history of the development of ionic liquids, their main physical properties, the most convenient ways to manipulate them, the most salient synthetic strategies for the preparation of ionic liquids, and several aspects related with their toxicity and biodegradability. Part two covers current applications of ionic liquids, mainly in catalysis (asymmetric and supported catalysis), including their use as solvents on different “green” applications, their use as electrolytes, and their pharmaceutical applications in drug production, as well as the potential of ionic liquids as drug candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci St Pétersbourg 8:405–422

    Google Scholar 

  2. Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy, and synthesis. Inorg Chem 21:1263–1264

    Article  CAS  Google Scholar 

  3. Boon J, Levisky JA, Pflug JL, Wilkes JS (1986) Friedel-crafts reactions in ambient-temperature molten salts. J Org Chem 51:480–483

    Article  CAS  Google Scholar 

  4. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun:965–967

    Google Scholar 

  5. Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD (2001) Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chem Commun:135–136

    Google Scholar 

  6. Fei Z, Dyson PJ (2013) The making of iLiquids – the chemist’s equivalent of the iPhone. Chem Commun 49:2594–2596

    Article  CAS  Google Scholar 

  7. Hough WL, Smiglak M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JH, Rogers RD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31:1429–1436

    Article  CAS  Google Scholar 

  8. Wasserscheid P, Keim W (2000) Ionic liquids-new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

    Article  CAS  Google Scholar 

  9. O’Neil MJ (2006) The Merck Index - an encyclopedia of chemicals, drugs, and biologicals. Merck and Co., Whitehouse Station, NJ, p 1480

    Google Scholar 

  10. Holbrey JD, Rogers RD (2002) Melting points and phase diagrams. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Google Scholar 

  11. Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11:417–424

    Article  CAS  Google Scholar 

  12. Holbrey JD, Seddon KR (1999) The phase behaviour of 1-alkyl-3-methylimidazolium tetrafluoroborates; ionic liquids and ionic liquid crystals. J Chem Soc Dalton Trans:2133–2140

    Google Scholar 

  13. Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  PubMed  Google Scholar 

  14. Chan BKM, Chang NH, Grimmett MR (1977) The synthesis and thermolysis of imidazole quaternary salts. Aust J Chem 30:2005–2013

    Article  CAS  Google Scholar 

  15. Clough MT, Geyer K, Hunt PA, Mertes J, Welton T (2013) Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. Phys Chem Chem Phys 15:20480–20495

    Article  CAS  PubMed  Google Scholar 

  16. Maton C, De Vos N, Stevens CV (2013) Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev 42:5963–5977

    Article  CAS  PubMed  Google Scholar 

  17. Mantz RA, Trulove PC (2002) Viscosity and density of ionic liquids. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim

    Google Scholar 

  18. Slattery JM, Daguenet C, Dyson PJ, Schubert TJS, Krossing I (2007) How to predict the physical properties of ionic liquids: a volume-based approach. Angew Chem Int Ed 46:5384–5388

    Article  CAS  Google Scholar 

  19. Idris A, Vijayaraghavan R, Patti AF, MacFarlane DR (2014) Distillable protic ionic liquids for keratin dissolution and recovery. ACS Sustain Chem Eng 2:1888–1894

    Article  CAS  Google Scholar 

  20. Achinivu EC, Howard RM, Li G, Graczb H, Henderson WA (2014) Lignin extraction from biomass with protic ionic liquids. Green Chem 16:1114–1119

    Article  CAS  Google Scholar 

  21. King AWT, Asikkala J, Mutikainen I, Järvi P, Kilpeläinen I (2011) Distillable acid-base conjugate ionic liquids for cellulose dissolution and processing. Angew Chem Int Ed 50:6301–6305

    Article  CAS  Google Scholar 

  22. Löwe H, Axinte RD, Breuch D, Hofmann C, Petersen JH, Pommersheim R, Wang A (2010) Flow chemistry: imidazole-based ionic liquid syntheses in micro-scale. Chem Eng J 163:429–437

    Article  Google Scholar 

  23. Zimmermann J, Ondruschka B, Stark A (2010) Efficient synthesis of 1,3-dialkylimidazolium-based ionic liquids: the modified continuous Radziszewski reaction in a microreactor setup. Org Process Res Dev 14:1102–1109

    Article  CAS  Google Scholar 

  24. Esposito D, Kirchhecker S, Antonietti M (2013) A sustainable route towards imidazolium building blocks based on biomass molecules. Chem Eur J 19:15097–15100

    Article  CAS  PubMed  Google Scholar 

  25. Kirchhecker S, Antonietti M, Esposito D (2014) Hydrothermal decarboxylation of amino acid derived imidazolium zwitterions: a sustainable approach towards ionic liquids. Green Chem 16:3705–3709

    Article  CAS  Google Scholar 

  26. Sosnowska A, Barycki M, Zaborowska M, Rybinska A, Puzyn T (2014) Towards designing environmentally safe ionic liquids: the influence of the cation structure. Green Chem 16:4749–4757

    Article  CAS  Google Scholar 

  27. Hough-Troutman WL, Smiglak M, Griffin S, Reichert WM, Mirska I, Jodynis-Liebert J, Adamska T, Nawrot J, Stasiewicz M, Rogers RD, Pernak J (2009) Ionic liquids with dual biological function: sweet and anti-microbial, hydrophobic quaternary ammonium-based salts. New J Chem 33:26–33

    Article  CAS  Google Scholar 

  28. Romero A, Santos A, Tojo J, Rodríguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151:268–273

    Article  CAS  PubMed  Google Scholar 

  29. Wells AS, Coombe VT (2006) On the freshwater ecotoxicity and biodegradation properties of some common ionic liquids. Org Process Res Dev 10:794–798

    Article  CAS  Google Scholar 

  30. Stolte S, Matzke M, Arning J, Böschen A, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2007) Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem 9:1170–1179

    Article  CAS  Google Scholar 

  31. Costello DM, Brown LM, Lamberti GA (2009) Acute toxic effects of ionic liquids on zebra mussel (Dreissena polymorpha) survival and feeding. Green Chem 11:548–553

    Article  CAS  Google Scholar 

  32. Pham TPT, Cho C-W, Min J, Yun Y-S (2008) Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of Pseudokirchneriella subcapitata. J Biosci Bioeng 105:425–428

    Article  CAS  PubMed  Google Scholar 

  33. Docherty KM, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189

    Article  CAS  Google Scholar 

  34. Kumar RA, Papaïconomou N, Lee J-M, Salminen J, Clark DS, Prausnitz JM (2009) In vitro cytotoxicities of ionic liquids: effect of cation rings, functional groups, and anions. Environ Toxicol 24:388–395

    Article  CAS  PubMed  Google Scholar 

  35. Stolte S, Arning J, Bottin-Weber U, Müller A, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2007) Effects of different head groups and functionalised side chains on the cytotoxicity of ionic liquids. Green Chem 9:760–767

    Article  CAS  Google Scholar 

  36. Ying G-G (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431

    Article  CAS  PubMed  Google Scholar 

  37. Pernak J, Chwala P (2003) Synthesis and anti-microbial activities of choline-like quaternary ammonium chlorides. Eur J Med Chem 38:1035–1042

    Article  CAS  PubMed  Google Scholar 

  38. Couling DJ, Bernot RJ, Docherty KM, Dixon JK, Maginn EJ (2006) Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling. Green Chem 8:82–90

    Article  CAS  Google Scholar 

  39. Pernak J, Syguda A, Mirska I, Pernak A, Nawrot J, Pradzynska A, Griffin ST, Rogers RD (2007) Choline-derivative-based ionic liquids. Chem Eur J 13:6817–6827

    Article  CAS  PubMed  Google Scholar 

  40. Petkovic M, Ferguson JL, Bohn A, Trindade J, Martins I, Carvalho MB, Leitão MC, Rodrigues C, Garcia H, Ferreira R, Seddon KR, Rebelo LPN, Silva Pereira C (2009) Exploring fungal activity in the presence of ionic liquids. Green Chem 11:889–894

    Article  CAS  Google Scholar 

  41. Dipeolu O, Green E, Stephens G (2009) Effects of water-miscible ionic liquids on cell growth and nitro reduction using Clostridium sporogenes. Green Chem 11:397–401

    Article  CAS  Google Scholar 

  42. Coleman D, Gathergood N (2010) Biodegradation studies of ionic liquids. Chem Soc Rev 39:600–637

    Article  CAS  PubMed  Google Scholar 

  43. Morrissey S, Pegot B, Coleman D, Garcia MT, Ferguson D, Quilty B, Gathergood N (2009) Biodegradable, non-bactericidal oxygen-functionalised imidazolium esters: a step towards ‘greener’ ionic liquids. Green Chem 11:475–483

    Article  CAS  Google Scholar 

  44. Grabinska-Sota E, Kalka J (2003) An assessment of the toxicity of pyridinium chlorides and their biodegradation intermediates. Environ Int 28:687–690

    Article  CAS  PubMed  Google Scholar 

  45. Boethling RS, Sommer E, DiFiore D (2007) Designing small molecules for biodegradability. Chem Rev 107:2207–2227

    Article  CAS  PubMed  Google Scholar 

  46. Petkovic M, Ferguson JL, Gunaratne HQN, Ferreira R, Leitão MC, Seddon KR, Rebelo LPN, Silva Pereira C (2010) Novel biocompatible cholinium-based ionic liquids-toxicity and biodegradability. Green Chem 12:643–649

    Article  CAS  Google Scholar 

  47. Neumann J, Cho C-W, Steudte S, Köser J, Uerdingen M, Thöming J, Stolte S (2012) Biodegradability of fluoroorganic and cyano-based ionic liquid anions under aerobic and anaerobic conditions. Green Chem 14:410–418

    Article  CAS  Google Scholar 

  48. Deng Y, Beadham I, Ghavre M, Costa Gomes MF, Gathergood N, Husson P, Légeret B, Quilty B, Sancelme M, Besse-Hoggan P (2015) When can ionic liquids be considered readily biodegradable? biodegradation pathways of pyridinium, pyrrolidinium and ammonium-based ionic liquids. Green Chem 17:1479–1491

    Article  CAS  Google Scholar 

  49. Stasiewicz M, Mulkiewicz E, Tomczak-Wandzel R, Kumirska J, Siedlecka EM, Golebiowski M, Gajdus J, Czerwicka M, Stepnowski P (2008) Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicol Environ Saf 1:157–165

    Article  Google Scholar 

  50. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  PubMed  Google Scholar 

  51. Remsing RC, Swatloski RP, Rogers RD, Moyona G (2006) Mechanism of cellulose dissolution in the ionic liquid 1-n-butyl-3-methylimidazolium chloride: a 13C and 35/37Cl NMR relaxation study on model systems. Chem Commun:1271–1273

    Google Scholar 

  52. Shill K, Padmanabhan S, Xin Q, Prausnitz JM, Clark DS, Blanch HW (2011) Ionic liquid pretreatment of cellulosic biomass: enzymatic hydrolysis and ionic liquid recycle. Biotechnol Bioeng 108:511–520

    Article  CAS  PubMed  Google Scholar 

  53. Hauru LKJ, Hummel M, King AWT, Kilpeläinen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromolecules 13:2896–2905

    Article  CAS  PubMed  Google Scholar 

  54. Brandt A, Gräsvik J, Halletta JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583

    Article  CAS  Google Scholar 

  55. Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110:3552–3599

    Article  CAS  PubMed  Google Scholar 

  56. Hamada Y, Yoshida K, Asai R-I, Hayase S, Nokami T, Izumib S, Itoh T (2013) A possible means of realizing a sacrifice-free three component separation of lignocellulose from wood biomass using an amino acid ionic liquid. Green Chem 15:1863–1868

    Article  CAS  Google Scholar 

  57. Idris A, Vijayaraghavan R, Rana UA, Fredericks D, Patti AF, MacFarlane DR (2013) Dissolution of feather keratin in ionic liquids. Green Chem 15:525–534

    Article  CAS  Google Scholar 

  58. Galy N, Mazières MR, Plaquevent J-C (2013) Toward waste-free peptide synthesis using ionic reagents and ionic liquids as solvents. Tetrahedron Lett 54:2703–2705

    Article  CAS  Google Scholar 

  59. Kumar S, Dixit SK, Awasthi SK (2014) An efficient one pot method for synthesis of carboxylic acids from nitriles using recyclable ionic liquid [bmim]HSO4. Tetrahedron Lett 55:3802–3804

    Article  CAS  Google Scholar 

  60. Ahammeda S, Kundu D, Siddiqui MN, Ranu BC (2015) Metal and solvent free selective oxidation of sulfides to sulfone using bifunctional ionic liquid [pmim]IO4. Tetrahedron Lett 56:335–337

    Article  Google Scholar 

  61. Liu Y, Xu Y, Jung SH, Chae J (2012) A facile and green protocol for nucleophilic substitution reactions of sulfonate esters by recyclable ionic liquids [bmim][X]. Synlett 23:2692–2698

    Article  CAS  Google Scholar 

  62. Byrne N, Howlett PC, MacFarlane DR, Forsyth M (2005) The zwitterion effect in ionic liquids: towards practical rechargeable lithium-metal batteries. Adv Mater 17:2497–2501

    Article  CAS  Google Scholar 

  63. Fernicola A, Scrosati B, Ohno H (2006) Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 12:95–102

    Article  CAS  Google Scholar 

  64. Galinski M, Lewandowski A, Stȩpniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  65. Matsumi N, Sugai K, Miyake M, Ohno H (2006) Polymerized ionic liquids via hydroboration polymerization as single ion conductive polymer electrolytes. Macromolecules 39:6924–6927

    Article  CAS  Google Scholar 

  66. Tiyapiboonchaiya C, Pringle JM, MacFarlane DR, Forsyth M, Sun J (2003) Polyelectrolyte-in-ionic-liquid electrolytes. Macromol Chem Phys 204:2147–2154

    Article  CAS  Google Scholar 

  67. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42:21–42

    Article  Google Scholar 

  68. Vidinha P, Lourenço NMT, Pinheiro C, Brás AR, Carvalho T, Santos-Silva T, Mukhopadhyay A, Romão MJ, Parola J, Dionisio M, Cabral JMS, Afonso CAM, Barreiros S (2008) Ion jelly: a tailor-made conducting material for smart electrochemical devices. Chem Commun:5842–5844

    Google Scholar 

  69. Rana S, Carvalho T, Fangueiro R, Vidinha P (2013) Silk-Ion Jelly: a novel ion conducting polymeric material with high conductivity and excellent mechanical stability. Polym Adv Technol 24:191–196

    Article  CAS  Google Scholar 

  70. Couto RM, Carvalho T, Neves LA, Ruivo RM, Vidinha P, Paiva A, Coelhoso IM, Barreiros S, Simões PC (2013) Development of Ion-Jelly® membranes. Sep Purif Technol 106:22–31

    Article  CAS  Google Scholar 

  71. Ramos LM, Guido BC, Nobrega CC, Corrêa JR, Silva RG, De Oliveira HCB, Gomes AF, Gozzo FC, Neto BAD (2013) The Biginelli reaction with an imidazolium-tagged recyclable iron catalyst: kinetics, mechanism, and antitumoral activity. Chem Eur J 19:4156–4168

    Article  CAS  PubMed  Google Scholar 

  72. Muskawar PN, Kumar SS, Bhagat PR (2013) Carboxyl-functionalized ionic liquids based on benzimidazolium cation: study of Hammett values and catalytic activity towards one-pot synthesis of 1-amidoalkyl naphthols. J Mol Catal A Chem 380:112–117

    Article  CAS  Google Scholar 

  73. Song Y, Cheng C, Jing H (2014) Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions. Chem Eur J 20:12894–12900

    Article  CAS  PubMed  Google Scholar 

  74. Malla AM, Parveen M, Ahmad F, Azaz S, Alam M (2015) [Et3NH][HSO4]-catalyzed eco-friendly and expeditious synthesis of thiazolidine and oxazolidine derivatives. RSC Adv 5:19552–19569

    Article  CAS  Google Scholar 

  75. Mcbride WG (1961) Thalidomide and congenital abnormalities. Lancet 278:1358

    Article  Google Scholar 

  76. Lenz W, Pfeiffer RA, Kosenow W, Hayman DJ (1962) Thalidomide and congenital abnormalities. Lancet 279:45–46

    Article  Google Scholar 

  77. Speirs AL, Aberd MD (1962) Thalidomide and congenital abnormalities. Lancet 279:303–305

    Article  Google Scholar 

  78. Earle MJ, McCormac PB, Seddon KR (1999) Diels–Alder reactions in ionic liquids. A safe recyclable alternative to lithium perchlorate-diethyl ether mixtures. Green Chem 1:23–25

    Article  CAS  Google Scholar 

  79. List B, Lerner RA, Barbas CF III (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc 122:2395–2396

    Article  CAS  Google Scholar 

  80. Shen Z-L, Goh KKK, Wong CHA, Loo W-Y, Yang Y-S, Lu J, Loh T-P (2012) Synthesis and application of a recyclable ionic liquid-supported imidazolidinone catalyst in enantioselective 1,3-dipolar cycloaddition. Chem Commun 48:5856–5858

    Article  CAS  Google Scholar 

  81. Kochetkov SV, Kucherenko AS, Kryshtal GV, Zhdankina GM, Zlotin SG (2012) Simple ionic liquid supported C2-symmetric bisprolinamides as recoverable organocatalysts for the asymmetric aldol reaction in the presence of water. Eur J Org Chem:7129–7134

    Google Scholar 

  82. Ghosh SK, Qiao Y, Ni B, Headley AD (2013) Asymmetric Michael reactions catalyzed by a highly efficient and recyclable quaternary ammonium ionic liquid-supported organocatalyst in aqueous media. Org Biomol Chem 11:1801–1804

    Article  CAS  PubMed  Google Scholar 

  83. Kucherenko AS, Lisnyak VG, Chizhov AO, Zlotin SG (2014) Primary amine attached to an N-(carboxyalkyl)imidazolium cation: a recyclable organocatalyst for the asymmetric Michael reaction. Eur J Org Chem:3808–3813

    Google Scholar 

  84. Kong Y, Tan R, Zhao L, Yin D (2013) L-Proline supported on ionic liquid-modified magnetic nanoparticles as a highly efficient and reusable organocatalyst for direct asymmetric aldol reaction in water. Green Chem 15:2422–2433

    Article  CAS  Google Scholar 

  85. Shinde SS, Patil SN (2014) One molecule of ionic liquid and tert-alcohol on a polystyrene-support as catalysts for efficient nucleophilic substitution including fluorination. Org Biomol Chem 12:9264–9271

    Article  CAS  PubMed  Google Scholar 

  86. Sharma P, Gupta M (2015) Silica functionalized sulphonic acid coated with ionic liquid: an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of 1,4-dihydropyridines under solvent-free conditions. Green Chem 17:1100–1106

    Article  CAS  Google Scholar 

  87. Earle MJ, McCormac PB, Seddon KR (2000) The first high yield green route to a pharmaceutical in a room temperature ionic liquid. Green Chem 2:261–262

    Article  CAS  Google Scholar 

  88. Kumar V, Malhotra SV (2008) Synthesis of nucleoside-based antiviral drugs in ionic liquids. Bioorg Med Chem Lett 18:5640–5642

    Article  CAS  PubMed  Google Scholar 

  89. Ressmann AK, Gaertner P, Bica K (2011) From plant to drug: ionic liquids for the reactive dissolution of biomass. Green Chem 13:1442–1447

    Article  CAS  Google Scholar 

  90. Moniruzzaman M, Kamiya N, Goto M (2010) Ionic liquid based microemulsion with pharmaceutically accepted components: formulation and potential applications. J Colloid Interface Sci 352:136–142

    Article  CAS  PubMed  Google Scholar 

  91. Mahkam M, Hosseinzadeh F, Galehassadi M (2012) Preparation of ionic liquid functionalized silica nanoparticles for oral drug delivery. J Biomater Nanobiotechnol 3:391–395

    Article  CAS  Google Scholar 

  92. Marrucho IM, Branco LC, Rebelo LPN (2014) Ionic liquids in pharmaceutical applications. Annu Rev Chem Biomol Eng 5:527–546

    Article  CAS  PubMed  Google Scholar 

  93. Dobbs W, Heinrich B, Bourgogne C, Donnio B, Terazzi E, Bonnet M-E, Stock F, Erbacher P, Bolcato-Bellemin A-L, Douce L (2009) Mesomorphic imidazolium salts: new vectors for efficient siRNA transfection. J Am Chem Soc 131:13338–13346

    Article  CAS  PubMed  Google Scholar 

  94. Ferraz R, Branco LC, Marrucho IM, Araújo JMM, Rebelo LPN, da Ponte MN, Prudêncio C, Noronha JP, Petrovski Z (2012) Development of novel ionic liquids based on ampicillin. Med Chem Commun 3:494–497

    Article  CAS  Google Scholar 

  95. Feder-Kubis J, Tomczuk K (2013) The effect of the cationic structures of chiral ionic liquids on their antimicrobial activities. Tetrahedron 69:4190–4198

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arturo Obregón-Zúñiga or Eusebio Juaristi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Obregón-Zúñiga, A., Juaristi, E. (2022). Ionic Liquids: Design and Applications. In: Richardson, P.F. (eds) Green Chemistry in Drug Discovery. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1579-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1579-9_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1577-5

  • Online ISBN: 978-1-0716-1579-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics