Skip to main content

The Screening of Combinatorial Peptide Libraries for Targeting Key Molecules or Protein–Protein Interactions in the NF-κB Pathway

  • Protocol
  • First Online:
NF-κB Transcription Factors

Abstract

Peptides are emerging as an increasingly dependable class of therapeutics in the treatment of cancer and metabolic and cardiovascular diseases, which are all areas of high interest to the pharmaceutical industry. The global market for peptide therapeutics was valued at about 25 billion USD in 2018 and is estimated to reach 57.2 billion USD by the end of 2027. Here, we describe a method for the screening and deconvolution of combinatorial peptide libraries to discover compounds that target discrete signaling components of the NF-κB pathway. Recently, we used this approach to specifically disrupt the interaction between the JNK-activating kinase, MKK7, and the NF-κB-regulated antiapoptotic factor, GADD45β, in multiple myeloma (MM). We showed that the GADD45β/MKK7 complex is a functionally critical survival module downstream of NF-κB in MM cells and as such provides an attractive therapeutic target to selectively inhibit NF-κB antiapoptotic signaling in cancer cells. By integrating the library screening and deconvolution methods described here with a rational chemical optimization strategy, we developed the first-in-class GADD45β/MKK7 inhibitor, DTP3 (a D-tripeptide), which is now being trialed in MM and diffuse large B-cell lymphoma (DLBCL) patients. The same drug discovery approach may be generally applied to therapeutically target other key components of the NF-κB pathway in cancers beyond MM and DLBCL, as well as in non-malignant NF-κB-driven diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bozovičar K, Bratkovič T (2019) Evolving a peptide: library platforms and diversification strategies. Int J Mol Sci 21(1):215

    Article  PubMed Central  Google Scholar 

  2. Bononi FC, Luyt LG (2015) Synthesis and cell-based screening of one-bead-one-compound peptide libraries. Methods Mol Biol 1248:223–237

    Article  CAS  PubMed  Google Scholar 

  3. Merrifield RB (1963) Solid phase peptide synthesis. 1. Synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154

    Article  CAS  Google Scholar 

  4. Sandomenico A, Caporale A, Doti N, Doti N, Cross S, Cruciani G et al (2020) Synthetic peptide libraries: from random mixtures to in vivo testing. Curr Med Chem 27(6):997–1016

    Article  CAS  PubMed  Google Scholar 

  5. Marasco D, Perretta G, Sabatella M, Ruvo M (2008) Past and future perspectives of synthetic peptide libraries. Curr Protein Pept Sci 9(5):447–467

    Article  CAS  PubMed  Google Scholar 

  6. Lam KS, Lebl M, Krchnák V (1997) The “one-bead-one-compound” combinatorial library method. Chem Rev 97:411–448

    Article  CAS  PubMed  Google Scholar 

  7. Coin I, Beyermann M, Bienert M (2007) Solid-phase peptide synthesis: from standard procedures to the synthesis of difficult sequences. Nat Protoc 2:3247–3256

    Article  CAS  PubMed  Google Scholar 

  8. Hughes JP, Rees S, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee AC, Harris JL, Khanna KK, Hong JH (2019) A comprehensive review on current advances in peptide drug development and design. Int J Mol Sci 20(10):2383

    Article  PubMed Central  Google Scholar 

  10. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26(10):2700–2707

    Article  CAS  PubMed  Google Scholar 

  11. Peptide therapeutics market – global industry analysis, size, share, growth, trends, and forecast 2019–2027. https://www.transparencymarketresearch.com/peptide-therapeutics-market.html. Rep Id: TMRGL418. Published: 2020-02-28

  12. Tornatore L, Sandomenico A, Raimondo D, Low C, Rocci A, Capece D et al (2014) Cancer-selective targeting of the NF-κB survival pathway with GADD45β/MKK7 inhibitors. Cancer Cell 26:495–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tornatore L, Capece D, D’Andrea D, Begalli F, Verzella D, Bennett J et al (2019) Preclinical toxicology and safety pharmacology of the first-in-class GADD45β/MKK7 inhibitor and clinical candidate, DTP3. Toxicol Rep 6:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tornatore L, Capece D, D’Andrea D, Begalli F, Verzella D, Bennett J et al (2018) Clinical proof of concept for a safe and effective NF-κB-targeting strategy in multiple myeloma. Br J Haematol 185(3):588–592

    Article  PubMed  Google Scholar 

  15. Houghten RA, Pinilla C, Blondelle SE, Appel JR, Dooley CT, Cuervo JH (1991) Generation and use of synthetic peptide combinatorial libraries for basic research and drug discovery. Nature 354(6348):84–86

    Article  CAS  PubMed  Google Scholar 

  16. Lonardo E, Parish CL, Ponticelli S, Marasco D, Ribeiro D, Ruvo M et al (2010) A small synthetic cripto blocking peptide improves neural induction, dopaminergic differentiation, and functional integration of mouse embryonic stem cells in a rat model of Parkinson’s disease. Stem Cells 28(8):1326–1337

    Article  CAS  PubMed  Google Scholar 

  17. Ponticelli S, Marasco D, Tarallo V, Albuquerque RJC, Mitola S, Takeda A et al (2008) Modulation of angiogenesis by a tetrameric tripeptide that antagonizes vascular endothelial growth factor receptor 1. J Biol Chem 283(49):34250–34259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu R, Li X, Lam KS (2017) Combinatorial chemistry in drug discovery. Curr Opin Chem Biol 38:117–126

    Article  PubMed  PubMed Central  Google Scholar 

  19. Doti N, Scognamiglio PL, Madonna S, Scarponi C, Ruvo M, Perretta G et al (2012) New mimetic peptides of the kinase-inhibitory region (KIR) of SOCS1 through focused peptide libraries. Biochem J 443(1):231–240

    Article  CAS  PubMed  Google Scholar 

  20. Sandomenico A, Russo A, Palmieri G, Bergamo P, Gogliettino M, Falcigno L, Ruvo M (2012) Small peptide inhibitors of acetyl-peptide hydrolase having an uncommon mechanism of inhibition and a stable bent conformation. J Med Chem 55:2102–2111

    Article  CAS  PubMed  Google Scholar 

  21. Sandomenico A, Severino V, Apone F, De Lucia A, Caporale A, Doti N et al (2017) Trifluoroacetylated tyrosine-rich D-tetrapeptides have potent antioxidant activity. Peptides 89:50–59

    Article  CAS  PubMed  Google Scholar 

  22. De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J et al (2001) Induction of gadd45β by NF-κB downregulates pro-apoptotic JNK signalling. Nature 414:308–313

    Article  PubMed  Google Scholar 

  23. Papa S, Zazzeroni F, Bubici C, Jayawardena S, Alvarez K, Matsuda S et al (2004) GADD45β mediates the NF-κB suppression of JNK signalling by targeting MKK7/JNKK2. Nat Cell Biol 6:146–153

    Article  CAS  PubMed  Google Scholar 

  24. Papa S, Monti SM, Vitale RM, Bubici C, Jayawardena S, Alvarez K et al (2007) Insights into the structural basis of the GADD45β-mediated inactivation of the JNK kinase, MKK7/JNKK2. J Biol Chem 282:19029–19041

    Article  CAS  PubMed  Google Scholar 

  25. Begalli F, Bennett J, Capece D, Verzella D, D’Andrea D, Tornatore L et al (2017) Unlocking the NF-κB conundrum: embracing complexity to achieve specificity. Biomedicine 5(3):50

    Google Scholar 

  26. Bennett J, Capece D, Begalli F, Verzella D, D’Andrea D, Tornatore L et al (2018) NF-κB in the crosshairs: rethinking an old riddle. Int J Biochem Cell Biol 95:108–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Capece D, D’Andrea D, Verzella D, Tornatore L, Begalli F, Bennett J et al (2018) Turning an old GADDget into a troublemaker. Cell Death Differ 25(4):640–642

    Article  PubMed Central  Google Scholar 

  28. Furka A, Sebestyén F, Asgedom M, Dibó G (1991) General method for rapid synthesis of multicomponent peptide mixtures. Int J Pept Protein Res 37(6):487–493

    Article  CAS  PubMed  Google Scholar 

  29. Lam K, Salmon S, Hersh E, Hruby VJ, Kazmierski WM, Knappet RJ (1991) A new type of synthetic peptide library for identifying ligand-binding activity. Nature 354:82–84

    Article  CAS  PubMed  Google Scholar 

  30. Zhou N, Luo Z, Luo J, Fan X, Cayabyab M, Hiraoka M et al (2002) Exploring the stereochemistry of CXCR4-peptide recognition and inhibiting HIV-1 entry with D-peptides derived from chemokines. J Biol Chem 277:17476–17485

    Article  CAS  PubMed  Google Scholar 

  31. Nickl CK, Raidas SK, Zhao H, Sausbier M, Ruth P, Tegge W, Brayden JE, Dostmann WR (2010) (D)-Amino acid analogues of DT-2 as highly selective and superior inhibitors of cGMP-dependent protein kinase alpha. Biochim Biophys Acta 1804:524–532

    Article  CAS  PubMed  Google Scholar 

  32. Rega C, Russo R, Focà A, Sandomenico A, Iaccarino E, Raimondo D et al (2018) Probing the interaction interface of the GADD45β/MKK7 and MKK7/DTP3 complexes by chemical cross-linking mass spectrometry. Int J Biol Macromol 114:114–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karin M (2014) Whipping NF-κB to submission via GADD45 and MKK7. Cancer Cell 26(4):447–449

    Article  CAS  PubMed  Google Scholar 

  34. Verzella D, Bennett J, Fischietti M, Thotakura AK, Recordati C, Pasqualini F et al (2018) GADD45β loss ablates innate immunosuppression in cancer. Cancer Res 78:1275–1292

    Article  CAS  PubMed  Google Scholar 

  35. Tornatore L, Marasco D, Dathan N, Vitale RM, Benedetti E, Papa S et al (2008) Gadd45 beta forms a homodimeric complex that binds tightly to MKK7. J Mol Biol 378(1):97–111

    Article  CAS  PubMed  Google Scholar 

  36. Behrendt R, White P, Offer J (2016) Advances in Fmoc solid-phase peptide synthesis. J Pept Sci 22:4–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Caporale A, Doti N, Monti A, Sandomenico A, Ruvo M (2018) Automatic procedures for the synthesis of difficult peptides using oxyma as activating reagent: a comparative study on the use of bases and on different deprotection and agitation conditions. Peptides 102:38–46

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Medical Research Council (MRC) Biomedical Catalyst grant MR/L005069/1, Bloodwise project grant 15003, and NIHR Imperial Biomedical Research Centre (BRC) Push for Impact Award WIIS_P81135 to G.F. Infrastructure support for this research was provided in part by the NIHR Imperial BRC. The authors would like to acknowledge and thank Mr. Cristian Ng for his assistance with the literature review.

Conflict of Interest

G.F., L.T., and M.R. are named inventors on patents relating to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Franzoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tornatore, L. et al. (2021). The Screening of Combinatorial Peptide Libraries for Targeting Key Molecules or Protein–Protein Interactions in the NF-κB Pathway. In: Franzoso, G., Zazzeroni, F. (eds) NF-κB Transcription Factors. Methods in Molecular Biology, vol 2366. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1669-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1669-7_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1668-0

  • Online ISBN: 978-1-0716-1669-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics